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Circular economy and carbon neutrality

A Challenges of circular economy from carbon neutrality

The role of technology

CO, in the transition to a circular economy
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A circular economy (also referred to as "circularity") is an economic system aimed at minimizing
waste and maintaining the value of products, materials and resources for as long as possible.

As opposed to a linear, “take-make-dispose” model in which natural resources are extracted
as raw materials for making products that are quickly thrown away after use, a circular economy
seeks to close the loops of energy and material flows by employing strategies such as reuse,
repair, refurbish, remanufacture and recycle.

manufacture - B
p— e
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take make dispose
recycle >
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The linear growth path, which depends on the extraction and consumption of finite resources, is
inherently unsustainable. A circular economy redefines growth by decoupling economic activities
from resource extraction and designing waste out of the system, thus reducing environmental
degradation and improving society-wide well-being. The Ellen MacArthur Foundation defines
three guiding principles of a circular economy, including 1) design out waste and pollution, 2)
keep products and materials in use, and 3) regenerate natural systems.
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TO BRIDGE BUSINESS WITH TECHNOLOGY,

The framework of circular economy is structured
over the whole life cycle of goods, services and
functions across wider social and economic
perspectives. A useful framework to understand and
approach circularity is the UNEP “9-R” concept
which is built upon the following four “value

retention loops”

*  From a whole system perspective: Reduce by design——reducing the
amount of material used, particularly raw material, from the earliest
stages of design of products and services.

*  From a user-to-user perspective: Refuse, Reduce and Re-use——for
instance, consumers saying no to certain products and services, and
users choosing to buy less and/or second-hand or using products for a
longer time.

*  From a user-to-business intermediary perspective: Repair, Refurbish
and Remanufacture.

*  From business-to-business: Repurpose and Recycle——After a
product reaches its end of life (EOL), manufacturers may adapt or
reprocess the discarded goods, in whole or in part, for another
function.
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A Circularity approach, UNEP (2019)
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It is international scientific consensus that, in order to prevent the
worst climate damages, global net human-caused emissions of
carbon dioxide (CO2) need to fall by about 45 percent from 2010
levels by 2030, reaching net zero around 2050. Global warming is
proportional to cumulative CO2 emissions, which means that the
planet will keep heating for as long as global emissions remain more
than zero. This implies that climate damages, caused by global
heating, will continue escalating for as long as emissions continue.

Net zero (or carbon neutral, climate neutral) refers to a state in
which the greenhouse gases going into the atmosphere are
balanced by removal out of the atmosphere. The term net zero is
important because — for CO2 at least — this is the state at which
global warming stops. To ‘go net zero’ is to reduce greenhouse gas
emissions and/or to ensure that any ongoing emissions are

balanced by removals. v/
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* The concept of emissions neutrality has
gained interest among policy-makers and an
increasing number of governments have
formulated neutrality targets.

 More than 130 countries have now set or are

ACHIEVED
BHUTAN B -

GERMANY 2045
SWEDEN +— 2045

EUROPEAN UNION

JAPAN [ 2050

considering a target of reducing emissions to
net zero by mid-century.
* The EU aims to become the first continent = ) == |
that achieves carbon neutrality by 2050. = E
* The Chinese government promised the world =E>
a new goal on September 22, 2020, which is to = B
. . nE>
strive to reach the peak of CO2 emissions by =
2030 and achieve carbon neutrality by 2060. =
ENERGY & CLIMATE INTELLIGENCE UNIT = m
NET ZERO EMISSIONS RACE -2

rE———— (https://eciu.net/netzerotracker) 8
EZmEmLERX BENITE HNWEFTEAS

TO BRIDGE BUSINESS WITH TECHNOLOGY, AND TO NURTURE MANAGERIAL TALENTS WITH ADVANCED KNOWLEDGE AND PRACTICAL ABILITY.




: $PWILANBEH . . u AACSB . Aiﬁjél&“ ﬂf\”ﬁﬁ
O ekl What is carbon neutrallty? DA

Net-zero emissions pledges have been
announced by national governments,
subnational jurisdictions, coalitions 4 and
a large number of corporate entities. As
of 23 April 2021, 44 countries and the

European Union have pledged to meet a 5
. . CO; emissions _
net-zero emissions target: in total they

Countries

Population

account for around 70% of global CO2
emissions and GDP. Of these, ten

countries have made meeting their net 40% 60% 0% 100%
zero target a legal obligation, eight are m Advanced economies Emerging market and developing economies Not covered
proposing to make it a legal obligation, EA. Al rights reserved
and the remainder have made their Counfries accounting for around 70% of global CO: emissions and GDP have set nef zero
pledges in official pOllcy documents. pledges in law, or proposed legislation or in an official policy document

9
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What is carbon neutrality
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W Behaviour and avoided demand m 600 Other
m Energy supply efficiency . Ot_her renewables
Buildings efficiency 500 Wind
Industry efficiency M Solar
Transport efficiency 400 W Hydro
Electric vehicles Traditional use of biomass
m Other electrification Modern gaseous bioenergy
® Hydrogen 300 Modern liquid bioenergy
® Wind and solar ® Modern solid bioenergy
M Transport biofuels 200 MNuclear
Other renewables Natural gas
B Other power = Oil
B CCUS industry 100 = Coal

CCUS power and fuel supply

2021-25 2026-30 2031-35 2036-40 2041-45 2046-50 issi ;
Net emissions reduction 2000 2010 2020 2030 2040 2050

EA. All rights reserved
EA. All rights reserved

Renewables and electrification make the largest confribution fo emissions reductions, buf a

wide range of measures and technologies are needed fo achieve net-zero emissions Renewables and nuclear power displace most fossil fuel use in the NZE,

and the share of fossil fuels falls from 80% in 2020 to just over 20% in 2050

Average annual CO2 reductions from 2020 in the net-zero emission Total energy supply during 2000-2050 in the net-zero emission

Low carbon energy transitions: Renewables and electrification make the largest contribution to emissions

reductions, but a wide range of measures and technologies are needed to achieve net-zero emissions (NEZ).

Renewables and nuclear power displace most fossil fuel use in the NZE, and the share of fossil fuels falls from 80%

in 2020 to just over 20% in 2050. 10
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Circular economy

A CAMEA

RE &R RMEARN UE

Low-carbon energy transition

o Circulating the material and energy flows in an economic : : :

Definition & &Y Transforming energy use into a low-carbon and sustainable pattern

system as a closed loop
: : * Environmental sustainability (especially, climate mitigation
* Environmental quality : v (esp v : )
* Energy equity enhancement
Goals * Resource management :
. : * Energy security guarantee
* Economic prosperity : :
* Economic prosperity

* 3R (reduction, reuse, and recycling) or 9R * Energy efficiency and conservation

Princioles * Life cycle assessment * Low-carbon energy(e.g., renewable energy)

P » Stakeholder participation * Energy equity and Economic feasibility

* Economic feasibility » Stakeholder participation (particularly, citizens)

Strategies * Eco-industrial park * Renewable energy deployment

(- gles) * Closed-loop supply chains * Innovative business models(e.g., energy cooperative initiatives)

P * Value chains * Energy demand management(e.g., behavioral changes)

» Sustainable design strategies (SDS) * Energy efficiency enhancement(e.g., building retrofit)
* Industrial ecology * Environmental/resource economics

Research * Material science * Energy policy

disciplines * Engineering * Electronic engineering

(examples) ' Environmental policy * Sociology
* Waste management * Geography
* Economics * Engineering
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e Circular economy (CE)  Low-carbon energy transition (ET)

— covers materials as well as energy — focuses on energy

— spans resource, environment, and — incorporates social aspects related to
economy dimensions energy use in addition to energy security

— Under CE, effective resource (resource) and environmental
management such as 3R is pursued; sustainability (environment)
these activities are evaluated and — ET principles emphasize the conditions
applied based on a lifecycle assessment. that enable low-carbon transition:

shifting energy sources together with
reduced energy consumption. In addition,
the transition needs to allow more
people to receive modern energy.

12
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Energy Transition Circular Economy
e CEandlow-carbon ET share common __—ooee-.
characteristics even though they were
promoted by different disciplines.
Both concepts concern the
environment as well as the economy
and aim to reach a sustainable future. |
* The figure shows the inter-connection
of CE and ET studies, with the nexus of
NEU. The reduction of NEU and using
environmentally friendly alternatives
to NEU in production can promote a
CE. At the same time, a low-carbon ET
could be promoted by relieving the .
dependence on fossil fuel NEU. e iR . —

Low-carbon energy transition

_ Economy model transition
material

transition from
ossil fuels (NEU)
to alternatives

transition of energy system
through energy efficiency
enhancement, energy
conservation, and renewable
energy deployment together with
equity enhancement related to
energy use

linear to closed-loop production
and consumption model
(including energy and material)
) through 3R and SDS from
perspective of LCA

material use
efficiency

Schematic diagram of an integrated energy transition model 13
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Selected materials used to produce renewable and low energy devices and infrastructures.

Technology Inventory of materials and commodities

Silicon, glass, aluminum, silver, copper, steel, polymers, electronics,

Photovoltaics . . ) ) ; :
indium, gallium, tellurium, germanium, cadmium, zinc

Steel, copper, aluminum, iron, cement, glass reinforced plastics, plastic

Wind turbines . ) : : .
resins, dysprosium, neodymium, praseodymium, electronics

Steel, aluminum, glass, copper, metal composites, fiberglass, rubber,
Electric vehicles ceramics and magnets, polymers, lead acid batteries, lithium-ion batteries,
electronics

Steel, iron, nickel, copper, manganese, lithium, cobalt, graphite, zinc,

Lithium ion batteries :
polymers, electronics

14
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3 Scenarioc  ———Bal ——NDC ———2deg

* A recent study show co-benefits of " / |
circular economy from carbon e i”‘" I
mitigation in China s :I
(https://doi.org/10.1016/j.jclepro.2017.11.070) T e
€) NDC wmBiomass Metal mNonmetal mFossii 4)  2deg mBiomass ~ Metal mNonmetal ® Fossil
* Carbon mitigation could save use of ™= e
metal ores, nonmetallic minerals, and g: I I EZ
fossil fuels in China. 5:2 I I 3:: I

5 R B R MR

Pas
=1

Resource consumption of the four material
groups in China for three scenarios, 2012-2030 15
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Key pillars of decarbonization
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* Achieving the rapid reduction in CO2

emissions over the next 30 years in the B e

net-zero emission (NZE) requires a o) 5
broad range of policy approaches and © e
technologies. The key pillars of 30 A
decarbonization of the global energy

system are energy efficiency, behavioral —
changes, electrification, renewables, 5 ..
hydrogen and hydrogen-based fuels,
bioenergy and carbon capture,
utilization and storage (CCUS).

2020

e Solar, wind and energy efficiency deliver
around half of emissions reductions to
2030 in the NZE, while electrification,
CCUS and hydrogen ramp up thereafter.

EEE LS BE BRBMITE WA

2030

/\(

N7

Measures

Activity
Mitigation measures
® Behaviour and

avoided demand

Energy efficiency
B Hydrogen-based

Electrification
B Bioenergy

Wind and solar

Other fuel shifts
m CCUs

Emissions reductions by mitigation measure in the NZE, 2020-2050
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&= e Renewables are central to emissions redﬁcﬁ §

2010 2020 2030 2040 2050

 Renewables are central to emissions
reductions in electricity, and they make & g !
major contributions to cut emissions in

buildings, industry and transport both
directly and indirectly. g ! ; !

B

Vea I'S. Fossil fuels without CCUS Other low-carbon Indirect renewables ® Direct renewables

Electricity

generation

Buildings heat

 The share of renewables in total electricity
generation globally increases from 29% in
2020 to over 60% in 2030 and to nearly
90% in 2050. To achieve this, annual
capacity additions of wind and solar
between 2020 and 2050 are five-times
higher than the average over the last three

Industry heat

Road transporrt

EA. All rights reserved

Fuel shares in total energy use in selected applications in the NZE o
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e CCUS can facilitate the transition to net-zero
CO2 emissions by: tackling emissions from
existing assets; providing a way to address
emissions from some of the most challenging
SeCtorS,' providing a Cost_effective pathway to T T PP ey

8 .............................................................................................................. DthEl’
- B Direct air capture
Fuel supply

- ...... Hydrogen production

_ ] Biofuels production
scale up low-carbon hydrogen production B "ot
rapidly; and aIIowing for CO2 removal from B oottt T | .. . Iml:::js:gw combustion
the atmosphere through BECCS and DACCS. 2 — EIE:;E:::;SES

—_— — M Bioenergy

By 2050, 7.6 Gt of CO2 is captured per year — ; = - = =_ .Ei;
from a diverse range of sources. A total of 2020 2025 2030 2035 2040 2045 2050
2.4 Gt CO2 is captured from bioenergy use S
and DAC, of which 1.9 Gt CO2 is permanently
stored. Global CO2 capture by source in the NZE

19
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* |n the transition to clean energy, critical minerals bring new challenges to energy security.

* An energy system powered by clean energy technologies differs profoundly from one fueled by
traditional hydrocarbon resources. Building solar photovoltaic (PV) plants, wind farms and
electric vehicles (EVs) generally requires more minerals than their fossil fuel-based
counterparts. A typical electric car requires six times the mineral inputs of a conventional car,
and an onshore wind plant requires nine times more mineral resources than a gas-fired power
plant. Since 2010, the average amount of minerals needed for a new unit of power generation
capacity has increased by 50% as the share of renewables has risen.

e Lithium, nickel, cobalt, manganese and graphite are crucial to battery performance, longevity
and energy density. Rare earth elements are essential for permanent magnets that are vital for
wind turbines and EV motors. Electricity networks need a huge amount of copper and
aluminum, with copper being a cornerstone for all electricity-related technologies.

* The shift to a clean energy system is set to drive a huge increase in the requirements for these
minerals, meaning that the energy sector is emerging as a major force in mineral markets. 20
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.
The rapid deployment of clean energy technologies as part of energy transitions

implies a significant increase in demand for minerals.

Transport (kg/vehicle) = Copper
Electric car [ — B Lithium
m Nickel
Conventional car [N
m Manganese
50 100 150 200 250
. Cobalt
Power generation (kg/MW)
Graphite
Offshore wind | —
® Chromium
Onshore wind | IEEEEEEEEENENN D
Molybdenum
Solar PV [N |
® Zinc

Nuclear IR

» Rare earths

coal I B Silicon
Natural gas [ Others
4 000 8 000 12 000 16 000 20 000
|EA. All rights reserved
Minerals used in selected clean energy technologies 21
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The energy sector becomes a leading consumer of minerals as energy transitions accelerate
100%

80%

60%

40%
. I I I I I

2010 2020 2040 2040 2010 2020 2040 2040 2010 2020 2040 2040 2010 2020 2040 2040 2010 2020 2040 2040
STEPS SDS STEPS SDS STEPS SDS STEPS SDS STEPS SDS
Lithium Cobalt Mickel Copper Rare earth elements

[EA. All rights reserved

Share of clean energy technologies in total demand for selected minerals
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Mineral demand for clean energy technologies would rise by at least four times by
2040 to meet climate goals, with particularly high growth for EV-related minerals

Growth to 2040 by sector Growth of selected minerals in the SDS, 2040 relative to 2020
~ 50 ~ 50
= ®m Hydrogen I
2 R 2 42
40 . & 40
u Electricity networks
S
£
30 4x EVs and battery 30
—*» storage 25
21
20 m Other low-carbon 19
power generation 20
10 Wind
10 7
I
I
m Solar PV
— N
2020 SDS Net-zero — . -
by 2050 Lithium  Graphite Cobalt Nickel Rare earths
scenario

IEA. All rights reserved.
Mineral demand for clean energy technologies by scenario 23
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*Availability and reliability of supply
The prospect of a rapid rise in demand for critical minerals —in most cases well above anything seen
previously — poses huge questions about the availability and reliability of supply. Some minerals such as
lithium raw material and cobalt are expected to be in surplus in the near term, while lithium chemical,
battery-grade nickel and key rare earth elements (e.g. neodymium, dysprosium) might face tight supply
in the years ahead. However, looking further ahead in a scenario consistent with climate goals, expected
supply from existing mines and projects under construction is estimated to meet only half of projected
lithium and cobalt requirements and 80% of copper needs by 2030.

Extraction Processing Qatar
Indonesia

' il m - 3 oil refining - =DRC
2 2 = Philippines
[ L mlUS
Saudi Arabia
Copper Chile . Copper l mRussia
= ran
Nicke! indenesia [N Nickel B Australia
® @ Chile
w [ ® Japan
2 Cobalt DRC z Cobalt “ Myanmar
2 = Peru
Rare earths Lithium . Finland
Belgium
. ; = Argentina
Lithium Australia - Rare earths “ Malaysia
0%  20% 40% 60% 80% 100% 0%  20% 40% @0% 80% 100% Estania

Share of top th\g_eeé)roducing countries in production of selected minerals and fossil fuels, 2019 24
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*Growing scrutiny of environmental and social performance

Production and processing of mineral resources gives rise to a variety of environmental and
social issues that, if poorly managed, can harm local communities and disrupt supply.
Consumers and investors are increasingly calling for companies to source minerals that are
sustainably and responsibly produced. Without efforts to improve environmental and social
performance, it may be challenging for consumers to exclude poor-performing minerals as
there may not be sufficient quantities of high-performing minerals to meet demand.

*Higher exposure to climate risks

Mining assets are exposed to growing climate risks. Copper and lithium are particularly
vulnerable to water stress given their high water requirements. Over 50% of today’s lithium
and copper production is concentrated in areas with high water stress levels. Several major
producing regions such as Australia, China, and Africa are also subject to extreme heat or
flooding, which pose greater challenges in ensuring reliable and sustainable supplies.

ExZBELYEMX BRARMITE MHNETE NS
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A recent study show that critical rare-earth (RE) elements
mismatch global wind-power ambitions (https://doi.org/10.1016/j.oneear.2020.06.009)

11- to 26-fold expansion of RE supply is needed for meeting global wind-
power targets.

The global RE requirement is estimated at 460-902 Gg in 2021-2050.
European wind-power development faces the highest risk of RE shortage.
Material recycling and efficiency, production expansion, and technical
innovation are promising for alleviating RE supply shortages in the long term.
However, the existing global RE supply structure, along with the intensifying
geopolitical and environmental constraints, could inhibit the rapid expansion
of wind power, which calls for global cooperation to foster a sustainable and
responsible RE supply chain.

26
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* Reducing material intensity via technological innovation
Reducing material intensity and encouraging material substitution via technology
innovation can also play major roles in alleviating strains on supply, while also reducing
costs. For example, 40-50% reductions in the use of silver and silicon in solar cells over the
past decade have enabled a spectacular rise in solar PV deployment. Innovation in
production technologies can also unlock sizeable new supplies. Emerging technologies,
such as direct lithium extraction or enhanced metal recovery from waste streams or low-
grade ores, offer the potential for a step change in future supply volumes.

* Recycling relieves the pressure on primary supply
The amount of spent EV batteries reaching the end of their first life is expected to surge
after 2030, at a moment of continued rapid growth in mineral demand. By 2040, recycled
guantities of copper, lithium, nickel and cobalt from spent batteries could reduce combined
primary supply requirements for these minerals by around 10%.

27
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Positive effect of technology -

* In the context of circular economy, technologies can improve the value retention of
materials and products and reduce waste. The figure shows how various types of green
technologies can be integrated into economic processes to promote circularity.
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* Technology designed for enhancing circularity holds the potential to resolve
sustainability challenges. Here is why:

* Technology could promote the decoupling of economic growth from
resource use.

* Technology - particularly digital innovations - can disrupt existing linear
value chains and promote the decoupling of economic growth from over-
consumption.

* Technology, when applied at scale can enable a systemic transition to a
circular economy.

* While the circular technologies and business models present important
opportunities, it is imperative to put in place an enabling policy and
investment framework to support the update of technological innovation.
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* A recent research reviews the role of conventional waste-to-energy, i.e.
incineration of (mainly) municipal solid waste with energy recovery, in the

circular economy (https://doi.org/10.1007/s10098-019-01686-0). Results show:

* Although waste-to-energy figures on a lower level in the European waste hierarchy than
recycling, it plays, from an overall sustainability point of view, an essential,
complementary and facilitating role within the circular economy.

* First of all, waste-to-energy combusts (or should combust) only waste that is non-
recyclable for economic, technical or environmental reasons. This way waste-to-energy is
compatible with recycling and only competes with landfill, which is lower in the waste
hierarchy.

* Furthermore, waste-to-energy keeps material cycles, and ultimately the environment and
humans largely free from toxic substances.

* Finally, waste-to-energy allows recovery of both energy and materials from non-recyclable
waste and hence contributes to keeping materials in circulation.
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 Technology has played a vital role in achieving economic and social prosperity. However, the
increased productivity and the over-exploitation and -consumption of resources that come
with technological advancements, have led to some unfavorable environmental outcomes,
such as resource scarcity, habitat loss and pollution, which put long-term sustainable
development at risk.

* Energy Efficiency Rebound: In energy efficiency literature, the rebound effect describes the
phenomenon where increased efficiency makes consumption of some good (e.g., energy or
transportation) relatively cheaper and, as a result, people consume more of it. This increased
use decreases the environmental benefit of the efficiency increase, and can even lead to
“backfire,” where the increase in use is proportionally larger than the efficiency increase,
leading to higher net impacts.

e Circular Economy Rebound: Circular economy activities can increase overall production, which
can partially or fully offset their benefits. As there is a strong parallel in this respect to energy
efficiency rebound, which is termed as ‘Circular Economy Rebound’. 34
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* Energy rebound occurs when increases in use-phase efficiency are offset by increased
use; circular economy rebound occurs when increases in production or consumption
efficiency are offset by increased levels of production and consumption.

* Broader circular economy rebound:

* Increased refillable bottle use, for instance, could lead to increased production and
operation of refilling stations;

* Increased emphasis on recycling could lead consumers to purchase more disposable
products, believing they can erase their impact at the recycling bin;

* Availability of cheaper materials attributed to increased recycling may change
consumer tastes (e.g., the perceived value of Apple products made from aluminum
rather than plastic);

* Repair occupations that have systematically disappeared over the past century may
start to re-emerge with unpredictable effects on employment, affluence,
immigration, and overall consumption levels and patterns.
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* Mechanism of circular economy rebound (https://doi.org/10.1111/jiec.12545).
There are at least two general mechanisms by which secondary production can lead to
rebound. The first has to do with the substitutability of secondary goods; the second has to do
with the effect of secondary goods on market prices.

* Rebound Attributed to Insufficient Substitutability. Secondary goods may be insufficient
substitutes for primary goods because they are of inferior quality or are otherwise less
desirable to users. This means that recycled plastics, papers, and some metals are likely
to be produced in addition to, rather than instead of, primary materials, and the potential
benefits of recycling will be reduced.

 Rebound Attributed to Price Effects. Increased secondary production activity impacts
prices. In order to entice buyers to purchase lower-grade materials, sellers offer them at a
discount relative to primary materials. As a result of increased paper and plastic recycling,

more goods are now produced, sold, and used.
36
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* Avoiding Circular Economy Rebound

* First, it is necessary that circular economy activities produce products and materials that
truly are substitutes for primary production alternatives.

* Second, it is necessary that circular economy activities either have no effect on or
decrease aggregate demand for goods. This is to say that they either must target areas
with fairly satiable demand (i.e., markets where buyers’ price sensitivity is low), or they
must ensure that increased secondary production does not significantly affect overall
prices.

* Third, if the first two conditions are met, it is also necessary that the circular economy
activity actually draws consumers away from primary production. In other words,
substitution from primary to secondary goods must actually occur.
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* Do sectoral material efficiency improvements add up to greenhouse gas
emissions reduction on an economy-wide level? (https://doi.org/10.1111/jiec.13138)

The study focuses on three material categories: iron and steel, non-ferrous metals, and non-
metallic minerals for construction. Results show that ME improvements in iron and steel
production and consumption processes can contribute to reducing GHG emissions, but only
by a small amount. Eco-design and novel technologies that use less materials in general, can
also contribute to GHG emission reduction. Such mitigation potential is especially large for
the construction of buildings and infrastructure due to the sector's massive use of non-
metallic minerals with a large climate impact (e.g., cement).

However, process efficiency and reduced demand for the three materials do not
necessarily lead to reduced GHG emissions on an economy-wide level and can even result
in increased GHG emissions due to a rebound effect in other sectors and other processes.

38
EEELYERE BFHNITE —MNEE NS

TO BRIDGE BUSINESS WITH TECHNOLOGY, AND TO NURTURE MANAGERIAL TALENTS WITH ADVANCED KNOWLEDGE AND PRACTICAL ABILITY.




&2!?.1,* SHTH 2 ®ancse <s"AMBA CAMEA
et Case study of rebound effect * “ ¥

* Material recycling would not always reduce the material we landfill.
(https://doi.org/10.1111/jiec.12808)

Proponents of material recycling typically point to two environmental benefits: disposal
(landfill/incinerator) reduction and primary production displacement. However, a recent
research mathematically demonstrate that, without displacement, recycling can delay but
not prevent any existing end-of-life material from reaching final disposal. The only way to
reduce the amount of material ultimately landfilled or incinerated is to produce less in the
first place; material that is not made needs not be disposed.

Recycling has the potential to reduce the amount of material reaching end of life solely by
reducing primary production. Therefore, the “dual benefits” of recycling are in fact one, and
the environmental benefit of material recycling rests in its potential to displace primary
production. However, displacement of primary production from increased recycling is driven
by market forces and is not guaranteed.
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The development of sequestration technologies has been associated with the transition from a
linear to a circular economy in several studies. Despite this, a significant aspect of this transition
has been missed—the development of waste management and waste processing technologies,
which are also typical for many other industries. This is important because in the framework of CCS
projects, CO2 is nothing more than a waste that needs to be effectively “stored”; however this is
not the case in CCUS and CCU.

On the other hand, studies associated with waste management are mostly focused on solid wastes,
with the exception of the nuclear industry. The emergence of CCU technologies is to some extent a
unigue and innovative step, which adds a processing option to the traditional methods used to
combat gaseous waste (capture and storage). Thus, without attention from the researchers to the
comprehensive development of waste management (including gaseous wastes and air quality
control) as part of the transition to a circular economy, a knowledge gap will appear in the coming
years.
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Another unexplored issue is the changing role of CO2 in the development of sequestration
technologies. At the beginning of the century, companies were focused on carbon tax reduction
rather than on using CO2. However, currently there is a rapid development of cost-effective
technologies for CO2 processing. At the same time, CO2 acts as a raw material for the production
of not only new, but also existing products, which means that it can take a share of already formed
markets.

The potential to enter existing and new markets is one of the key factors that determines the
interest of industry and investors in CCUS and CCU technologies. Consequently, with the
development of new, and improvement of existing, CO2 utilization technologies, the rate of
deployment of sequestration projects will increase, which is a positive trend in the context of
sustainable development. This situation requires a revision of the attitude towards CO2 and
justification of its role in the world economy, not as a waste but as a useful resource that will lead
to the formation of the so-called CO2 economy
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taken from Figure 6
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As the figure shows, all the mentioned activities are possible only in the
framework of CCU. However, it should be noted that CCUS, to a certain extent,
also involves recycling, as enhanced natural resources can be processed using
carbon capture technologies. Only CCS does not include any cyclic processes (in
terms of CO, use), which allows one to attribute such projects to a linear economy.
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Thanks for your attention!
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