

Training Handbook: Building Material Cleaner Production Auditing and Green Building Material Evaluation

For MSMEs

Imprint

Title: Training Handbook:Building Material Cleaner Production Auditing and Green Building Material Evaluation - for MSMEs

Authors: Wuppertal Institut - Gokarakonda, Sriraj; Moore,Christopher; Shrestha,Shritu; Xia-Bauer, Chun; China Environmental Management School - Zhang, Renzhi; Guojian Lianxin Attestation Center (GJC) - Guan, Chen; energydesign(Shanghai) - Niemann, Hans; Beijing University of Civil Engineering and Architecture - Zhang, Mingshun.

Published: Wuppertal Institute 2016

Project title: SusBuild - Up-scaling and mainstreaming sustainable building practices in western China

Work Package: 1

Funded by: European Commision

Contact: Chun Xia-Bauer Doeppersberg 19 42103 Wuppertal (Germany) e-mail: chun.xia@wupperinst.org

Content

1.1 Concept of Cleaner Production 1 1.1.1 Basic Concept 1 1.1.2 Basic Contents 1 1.1.3 Measures 2 1.1.4 Implement Procedure 3 1.2 Developing History of Cleaner Production 4 1.2.1 Preliminary Preparation Stage (1973-1988) 4 1.2.2 Introducing and Digesting Stage (1989-1992) 4 1.2.3 Legislation and Pilot Program Verification Stage (1993-2002) 4 1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.2 Policies Relevant to Cleaner Production Audit	1. Introduction of Cleaner Production Audit1
1.1.1 Basic Concept 1 1.1.2 Basic Contents 1 1.1.3 Measures 2 1.1.4 Implement Procedure 3 1.2 Developing History of Cleaner Production 4 1.2.1 Preliminary Preparation Stage (1973-1988). 4 1.2.2 Introducing and Digesting Stage (1989-1992) 4 1.2.3 Legislation and Pilot Program Verification Stage (1993-2002) 4 1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.1 Cleaner Production of Building Material Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Ceramics Cleaner Production Industry	1.1 Concept of Cleaner Production1
1.1.3 Measures 2 1.1.4 Implement Procedure 3 1.2 Developing History of Cleaner Production 4 1.2.1 Preliminary Preparation Stage (1973-1988). 4 1.2.2 Introducing and Digesting Stage (1989-1992) 4 1.2.3 Legislation and Pilot Program Verification Stage (1993-2002) 4 1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.1 Cleaner Production of Building Material Cleaner Production 2.1 Index Systems of Evaluation of Building Material Cleaner Production 8 2.1 Levaluation Index System of Cleaner Production Industry 12 2.2 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cleaner Production Industry 25 2.4 Evaluation Index System of Steel Cleaner Production Industry 30 2.5 Evaluation Index System of Plate Glass Production Industry 51 3. Case Analysis of Plate Glass Cleaner Production Industry 51 3. Case Analysis of Plate Glass Cleaner Production Industry 57 3.1.1 Enterprise Cases 57 3.1.2 Cleaner Production Scheme 60 3.2.2 Cleaner Production Scheme 60 3.2.2 Alanning an	1.1.1 Basic Concept 1 1.1.2 Basic Contents 1
1.1.4 implement Procedure 3 1.2 Developing History of Cleaner Production 4 1.2.1 Preliminary Preparation Stage (1973-1988)	1.1.3 Measures
1.2 Developing History of Cleaner Production 4 1.2.1 Preliminary Preparation Stage (1973-1988)	1.1.4 Implement Procedure
1.2.1 Preliminary Preparation Stage (19/3-1986) 4 1.2.2 Introducing and Digesting Stage (19/3-1992) 4 1.2.3 Legislation and Pilot Program Verification Stage (19/3-2002) 4 1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3 Legislation and Policy relevant to Cleaner Production Audit 6 1.3.1 Cleaner Production Promotion Law of the People's Republic of China6 1.3.2 Policies Relevant to Cleaner Production 2. Index Systems of Evaluation of Building Material Cleaner Production 8 2. Index Systems of Evaluation of Ceramics Cleaner Production Industry 12 12 2.1 Evaluation Index System of Coating Cleaner Production Industry 12 2.2 Evaluation Index System of Ceenent Cleaner Production Industry 15 2.3 Evaluation Index System of Steel Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry 39 2.6 Evaluation Index System of Plate Glass Production Industry 57 3.1 Case Analysis of Cleaner Production of China Building Material Industry 57 3.1.2 Cleaner Production Scheme 60 3.2 Case Analysis of Ceranet Cleaner Production Industry 57	1.2 Developing History of Cleaner Production
1.2.2 Introducting and Digesting Stage (1993-2002) 4 1.2.3 Legislation and Pilot Program Verification Stage (1993-2002) 4 1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3 Legislation and Policy relevant to Cleaner Production Audit 6 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.2 Policies Relevant to Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 8 2.1 Index Systems of Evaluation of Ceramics Cleaner Production Industry	1.2.1 Preliminary Preparation Stage (1973-1988)
1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005) 5 1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3 Legislation and Policy relevant to Cleaner Production Audit 6 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.2 Policies Relevant to Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry	1.2.3 Legislation and Pilot Program Verification Stage (1993-2002) 4
1.2.5 Audit System Developing and Refining Phase (2006-present) 5 1.3 Legislation and Policy relevant to Cleaner Production Audit 6 1.3.1 Cleaner Production Promotion Law of the People's Republic of China6 1.3.2 Policies Relevant to Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cenent Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry 39 2.6 Evaluation Index System of Plate Glass Production Industry 51 3. Case Analysis of Cleaner Production of China Building Material 11 Industry 57 3.1 Case Analysis of Plate Glass Cleaner Production Industry 57 3.1.1 Enterprise Cases 57 3.1.2 Cleaner Production Scheme 60 3.2 Case Analysis of Cement Cleaner Production Industry 61 3.2.1 Introduction of Cleaner Production Program 61 3.2.2 Planning and Organizing 62 3.2.3 Pre-audit of Cleane	1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005)
1.3 Legislation and Policy relevant to Cleaner Production Audit 6 1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.2 Policies Relevant to Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 2.3 Evaluation Index System of Coating Cleaner Production Industry	1.2.5 Audit System Developing and Refining Phase (2006-present)5
1.3.1 Cleaner Production Promotion Law of the People's Republic of China 6 1.3.2 Policies Relevant to Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cement Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry	1.3 Legislation and Policy relevant to Cleaner Production Audit
1.3.2 Policies Relevant to Cleaner Production 8 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 13 2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Coating Cleaner Production Industry	1.3.1 Cleaner Production Promotion Law of the People's Republic of China6
 2. Index Systems of Evaluation of Building Material Cleaner Production 12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cement Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry	1.3.2 Policies Relevant to Cleaner Production
12 2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cement Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry 39 2.6 Evaluation Index System of Plate Glass Production Industry	2. Index Systems of Evaluation of Building Material Cleaner Production
2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12 2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15 2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cement Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry 39 2.6 Evaluation Index System of Plate Glass Production Industry	
2.2 Evaluation Index System of Ceramics Cleaner Production Industry	2.1 Evaluation Index System of Aluminum Cleaner Production Industry 12
2.3 Evaluation Index System of Coating Cleaner Production Industry 25 2.4 Evaluation Index System of Cement Cleaner Production Industry 30 2.5 Evaluation Index System of Steel Cleaner Production Industry 39 2.6 Evaluation Index System of Plate Glass Production Industry 51 3. Case Analysis of Cleaner Production of China Building Material 57 3.1 Case Analysis of Plate Glass Cleaner Production Industry 57 3.1.1 Enterprise Cases 57 3.1.2 Cleaner Production Scheme 60 3.2 Case Analysis of Cement Cleaner Production Industry 61 3.2.1 Introduction of Cleaner Production Program 61 3.2.2 Planning and Organizing 62 3.2.4 Cleaner Production Evaluation 74 3.3 Case analysis of Ceramics Cleaner Production industry 95 3.3.1 Planning and Organizing 95	2.2 Evaluation Index System of Ceramics Cleaner Production Industry 15
2.4 Evaluation Index System of Cement Cleaner Production Industry	2.3 Evaluation Index System of Coating Cleaner Production Industry 25
2.5 Evaluation Index System of Steel Cleaner Production Industry 39 2.6 Evaluation Index System of Plate Glass Production Industry 51 3. Case Analysis of Cleaner Production of China Building Material 10 Industry 57 3.1 Case Analysis of Plate Glass Cleaner Production Industry 57 3.1.1 Enterprise Cases 57 3.1.2 Cleaner Production Scheme 60 3.2.1 Introduction of Cleaner Production Industry 61 3.2.2 Planning and Organizing 62 3.2.3 Pre-audit of Cleaner Production 65 3.2.4 Cleaner Production Evaluation 74 3.3 Case analysis of Ceramics Cleaner Production industry 95 3.3.1 Planning and Organizing 95	2.4 Evaluation Index System of Cement Cleaner Production Industry 30
2.6 Evaluation Index System of Plate Glass Production Industry 51 3. Case Analysis of Cleaner Production of China Building Material 57 Industry 57 3.1 Case Analysis of Plate Glass Cleaner Production Industry 57 3.1.1 Enterprise Cases 57 3.1.2 Cleaner Production Scheme 60 3.2 Case Analysis of Cement Cleaner Production Industry 61 3.2.1 Introduction of Cleaner Production Program 61 3.2.2 Planning and Organizing 62 3.2.3 Pre-audit of Cleaner Production 65 3.2.4 Cleaner Production Evaluation 74 3.3 Case analysis of Ceramics Cleaner Production industry 95 3.3.1 Planning and Organizing 95	2.5 Evaluation Index System of Steel Cleaner Production Industry
3. Case Analysis of Cleaner Production of China Building Material Industry 57 3.1 Case Analysis of Plate Glass Cleaner Production Industry 57 3.1.1 Enterprise Cases 57 3.1.2 Cleaner Production Scheme 60 3.2 Case Analysis of Cement Cleaner Production Industry 61 3.2.1 Introduction of Cleaner Production Program 61 3.2.2 Planning and Organizing 62 3.2.3 Pre-audit of Cleaner Production 65 3.2.4 Cleaner Production Evaluation 74 3.3 Case analysis of Ceramics Cleaner Production industry 95 3.3.1 Planning and Organizing 95	2.6 Evaluation Index System of Plate Glass Production Industry
Industry573.1 Case Analysis of Plate Glass Cleaner Production Industry573.1.1 Enterprise Cases573.1.2 Cleaner Production Scheme603.2 Case Analysis of Cement Cleaner Production Industry613.2.1 Introduction of Cleaner Production Program613.2.2 Planning and Organizing623.2.3 Pre-audit of Cleaner Production653.2.4 Cleaner Production Evaluation743.3 Case analysis of Ceramics Cleaner Production industry953.3.1 Planning and Organizing95	3. Case Analysis of Cleaner Production of China Building Material
3.1 Case Analysis of Plate Glass Cleaner Production Industry573.1.1 Enterprise Cases573.1.2 Cleaner Production Scheme603.2 Case Analysis of Cement Cleaner Production Industry613.2.1 Introduction of Cleaner Production Program613.2.2 Planning and Organizing623.2.3 Pre-audit of Cleaner Production653.2.4 Cleaner Production Evaluation743.3 Case analysis of Ceramics Cleaner Production industry953.3.1 Planning and Organizing95	Industry57
3.1.1 Enterprise Cases573.1.2 Cleaner Production Scheme603.2 Case Analysis of Cement Cleaner Production Industry613.2.1 Introduction of Cleaner Production Program613.2.2 Planning and Organizing623.2.3 Pre-audit of Cleaner Production653.2.4 Cleaner Production Evaluation743.3 Case analysis of Ceramics Cleaner Production industry953.3.1 Planning and Organizing95	3.1 Case Analysis of Plate Glass Cleaner Production Industry
3.1.2 Cleaner Production Scheme.603.2 Case Analysis of Cement Cleaner Production Industry613.2.1 Introduction of Cleaner Production Program.613.2.2 Planning and Organizing623.2.3 Pre-audit of Cleaner Production653.2.4 Cleaner Production Evaluation743.3 Case analysis of Ceramics Cleaner Production industry953.3.1 Planning and Organizing95	3.1.1 Enterprise Cases57
3.2 Case Analysis of Cement Cleaner Production Industry 61 3.2.1 Introduction of Cleaner Production Program 61 3.2.2 Planning and Organizing 62 3.2.3 Pre-audit of Cleaner Production 65 3.2.4 Cleaner Production Evaluation 74 3.3 Case analysis of Ceramics Cleaner Production industry 95 3.3.1 Planning and Organizing 95	3.1.2 Cleaner Production Scheme
3.2.1 Introduction of Cleaner Production Program	3.2 Case Analysis of Cement Cleaner Production Industry
3.2.2 Planning and Organizing623.2.3 Pre-audit of Cleaner Production653.2.4 Cleaner Production Evaluation743.3 Case analysis of Ceramics Cleaner Production industry953.3.1 Planning and Organizing95	3.2.1 Introduction of Cleaner Production Program
 3.2.3 Pre-audit of Cleaner Production	3.2.2 Planning and Organizing
3.2.4 Cleaner Production Evaluation	3.2.3 Pre-audit of Cleaner Production
3.3 Case analysis of Ceramics Cleaner Production Industry	3.2.4 Cleaner Production Evaluation
3.3.1 Planning and Organizing	3.3 Case analysis of Ceramics Cleaner Production Industry
3 3 2 Pro-audit of Cleanor Production	3.3.1 Manning and Organizing
3.3.3 Cleaner Production Evaluation	3.3.3 Cleaner Production Evaluation

3.3.4 Generation and Selection of Plans	. 127
3.3.5 Feasibility Analysis	. 128
3.3.6 Plan Implementation	. 131
3.3.7 Continuous Cleaner Production	. 132
4 Evaluation of Green Building Material	.133
4.1 Management of Green Building Material Evaluation Certificate	. 133
4.2 Action Plan of Promoting Green Building Material Production and	
Implementation	136
4.2.1 Action of Green Building Material Industry	. 136
4.2.3 Action of Performance Promotion of Cement and Relevant Product 4.2.4 Action of Popularization of Steel Structure and Wooden Structure	t138
Building	. 138
4.2.5 Action of Popularization of Plate Glass and Energy-saving Doors a Windows	and . 139
4.2.6 Action of Innovation of Material of Building Wall and Insulation 4.2.7 Action of Upgrade of Ceramic and Chemical Building Material	. 139
Consumption	. 139
4.2.8 Action of Popularization of Green Building Material in Rural Area .	. 140
4.2.9 Action of Establishment of Pilot Programs	. 140
4.2.10 Action of Enhancement of Organization and Implementation	. 141
4.3 Implementation Guidelines of Green Building Material Certificates a	nd
Technical Guidelines of evaluation of Green Building Material	. 142
Technical Guidelines of evaluation of Green Building Material	. 142 . 142
Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material	. 142 . 142 . 147
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Building 	. 142 . 142 . 147 ding
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Build Materials /Components in Europe 	142 142 147 ding 174
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Build Materials /Components in Europe 5.1 Ecolabels of sustainable building material and components 	. 142 . 142 . 147 ding . 174 . 174
 Technical Guidelines of evaluation of Green Building Material	. 142 . 142 . 147 ding . 174 . 174 . 174
 Technical Guidelines of evaluation of Green Building Material	. 142 . 147 ding . 174 . 174 . 174 . 183
 Technical Guidelines of evaluation of Green Building Material	. 142 . 147 ding . 174 . 174 . 174 . 183 .ble
 Technical Guidelines of evaluation of Green Building Material	. 142 . 147 ding . 174 . 174 . 174 . 183 .ble . 184
 Technical Guidelines of evaluation of Green Building Material	. 142 . 147 ding . 174 . 174 . 174 . 183 . 184 . 189
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Build Materials /Components in Europe 5.1 Ecolabels of sustainable building material and components 5.1.1 European and German labels of sustainable building materials 5.1.2 International labels of sustainable building materials 5.1.3 Sustainability building schemes and their requirements of sustainable building products and components 5.1.4 Sustainable building materials and components database 5.2 Environmental Product Declaration (EPD) 	142 147 ding 174 174 174 183 ble 184 189 189
 Technical Guidelines of evaluation of Green Building Material	142 147 ding 174 174 174 183 ble 184 189 189 193 Dpe
 Technical Guidelines of evaluation of Green Building Material	142 147 ding 174 174 174 174 183 ble 184 189 189 193 ope 195
 Technical Guidelines of evaluation of Green Building Material	142 147 ding 174 174 174 174 183 ble 184 189 183 189 193 0pe 195
 Technical Guidelines of evaluation of Green Building Material	142 147 ding 174 174 174 183 ble 184 189 189 193 Dpe 195 195
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Build Materials /Components in Europe 5.1 Ecolabels of sustainable building material and components 5.1.1 European and German labels of sustainable building materials 5.1.2 International labels of sustainable building materials 5.1.3 Sustainability building schemes and their requirements of sustainable building products and components 5.1.4 Sustainable building materials and components in Europ 6. Future-oriented sustainable building materials/components in Europ 6.1 Insulation 6.1.2 Vacuum insulation panels. 	142 147 147 147 174 174 174 183 184 183 184 189 189 195 195
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Build Materials /Components in Europe 5.1 Ecolabels of sustainable building material and components 5.1.1 European and German labels of sustainable building materials 5.1.2 International labels of sustainable building materials 5.1.3 Sustainability building schemes and their requirements of sustainable building products and components 5.1.4 Sustainable building materials and components database 5.2 Environmental Product Declaration (EPD) 6. Future-oriented sustainable building materials/components in Europe 6.1.1 Aerogels 6.1.2 Vacuum insulation panels 6.2 Advanced windows and glazing systems. 	142 147 ding 174 174 174 183 ble 183 189 189 189 189 195 195 195 195
 Technical Guidelines of evaluation of Green Building Material 4.3.1 Implementation Guidelines of Green Building Material Certificates 4.3.2 Technical Guidelines of evaluation of Green Building Material 5. Labels and Environmental Product Declaration of Sustainable Build Materials /Components in Europe 5.1 Ecolabels of sustainable building material and components 5.1.1 European and German labels of sustainable building materials 5.1.2 International labels of sustainable building materials 5.1.3 Sustainability building schemes and their requirements of sustainable building products and components 5.1.4 Sustainable building materials and components database 5.2 Environmental Product Declaration (EPD) 6. Future-oriented sustainable building materials/components in Europe 6.1.1 Aerogels 6.1.2 Vacuum insulation panels. 6.2.1 Double or triple glazing systems with low-e coating. 	142 147 ding 174 174 174 174 183 ble 183 189 189 189 193 195 195 195 195 195 195

6.3 Phase Change Materials	200
6.4 Advanced Building Integrated PV (BIPV) systems	203
6.4.1Panel technology improvements for transparent panels	204
6.4.2 Panel technology improvements for opaque panels	206

List of Tables:

Table 1: Policies for Cleaner Production	8
Table 2: Quantitive Rating System of Electrolytic Aluminum Production Enterprises	12
Table 3: Qualitative Rating System of Electrolytic Aluminum Production Enterprises	13
Table 4: Quantitive Evaluation and Rating System of Domestic Ceramics Production	
Enterprise	16
Table 5: Quantitive Rating System of Dry-Pressed Ceramic Tiles (E≤0.5%) Enterprise	18
Table 6: Quantitive Rating System of Dry-Pressed Ceramic Tiles (0.5% <e≤10%) enterp<="" td=""><td>rise</td></e≤10%)>	rise
	19
Table 7: Quantitive Rating System of Dry-Pressed Ceramic Tiles (E>10%) Enterprise	21
Table 8: Quantitive Evaluation and Rating System of Sanitary Ceramics Production Enterp	orise
	22
Table 9: Qualitative Evaluation and Rating System of Domestic Ceramics Production	
Enterprise	24
Table 10: Rating Table of Solvent-Based Paint Cleaner Production	25
Table 11: Rating Table of Water-Based Paint Cleaner Production	27
Table 12: Rating Table of Powdered Paint Cleaner Production	28
Table 13: Quantitive Rating System of Cement Production Enterprises	31
Table 14: Evaluation Index of Cleaner Production of Iron and Steel Production Enterprise	40
Table 15: Quantitive Rating System of Cleaner Production of Plate Glass	52
Table 16: Index Value Comparison between One Plate Glass Enterprise and Requiremen	ts59
Table 17: Overview of Cleaner Production Plans	61
Table 18: Plan of Cleaner Production Implementation	62
Table 19: Barriers and Solutions of Cleaner Production Audit	65
Table 20: Supply and Consumption of Source Material (Year 2010)	68
Table 21: Smoke and Dust Emission Results of Each Outfall	70
Table 22: Generation and Treatment of Noise	72
Table 23: Goal of Cleaner Production of Enterprises	72
Table 24: Summary of Plans of No Charges/Low Charges	73
Table 25: Function Description of Unit Operations of Fired Station	75
Table 26: Summary of Input/output Data of Clinker Station	76
Table 27: Water Balance of Clinker Station	76
Table 28: Heat Balance of Clinker Station	77
Table 29: Summary of Cleaner Production Plans	79
Table 30: Selection of Cleaner Production Plans	81
Table 31: Comparison of Plans on Techniques, Environment and Economic Aspects	87
Table 32: Implementation and Outcomes of No/Low Cost Plans	88
Table 33: Implementation and Outcomes of Medium/High Cost Plans	89
Table 34: Index Comparison before/after Audit	91
Table 35: Score before/after Cleaner Production Audit	92
Table 36: Overview of Major Equipment Audit	98
Table 37: Overview of Consumption of Raw and Auxiliary Materials in Last 3 Years	. 101
Table 38: Overview of Production in Last 3 Years	. 102

Table 39: Overview of Output Value in Last 3 Years	102
Table 40: Overview of Energy Consumption in Last 3 Years	103
Table 41: Generation and Treatment of Wasted Water	104
Table 42: Overview of Wasted Water	105
Table 43: Overview of Wasted Water	105
Table 44: Generation and Treatment of Wasted Gas	105
Table 45: Generation of Solid Waste	106
Table 46: Identification of Hazardous Waste of Sludge from Waste Water Treatment Plan	nt 107
Table 47: Intensity of Major Noise Source	108
Table 48: Circadian Plant Boundary Noise Monitoring	109
Table 49: Qualitative Evaluation and Rating System of Domestic Ceramics Production	
Enterprise	110
Table 50: Quantitive Evaluation and Rating System of Domestic Ceramics Production	
Enterprise	111
Table 51: Evaluation Index of Enterprises of Different Level in Ceramic Industry	114
Table 52: Overview of Targets of Cleaner Production Audit	116
Table 53: Determining the Focus of Audit via Weighted Scoring Method	117
Table 54: Overview of Cleaner Production Potential on Pre-Audit Stage	118
Table 55: Operation Conditions of Branch Plant #1	120
Table 56: Energy Consumption in Jan.2011	122
Table 57: Overview of Cleaner Production Potential on Audit Stage	126
Table 58: Classification of Types of Plan	127
Table 59: Summary of Plans	128
Table 60: Classification of Green Building Material	150
Table 61: Basic Requirement of Production	150
Table 62: Grading index weights	151
Table 63: Rating Rules of Energy Consumption per Product	151
Table 64: Rating Table of Drying Shrinkage Index of Non-Sintered Type Masonry Materia	als
and Water Absorption Rate of Sintering Class Masonry Materials	152
Table 65: Rating Table of Frost Resistance Index Requirement	152
Table 66: Rating Table of Compressive Strength and Bulk Density	153
Table 67: Basic Requirement of Production	154
Table 68: Value of Indexes	154
Table 69: Rating Table of Thermal Conductivity	155
Table 70: Basic Requirement of Production	157
Table 71: Value of Indexes	158
Table 72: Basic Requirement of Production	160
Table 73: Value of Indexes	161
Table 74: Thermal Performance Rating Rules	161
Table 75: Basic Requirement of Production	163
Table 76: Value of Indexes	163
Table 77: Scoring Rules of Ceramic Tile Thickness	164
Table 78: Single Package Weight Rating Rules	165
Table 79: Basic Requirement of Production	166

Table 80: Value of Indexes	166
Table 81: Weight Requirements for Single Piece	167
Table 82: Scoring Rules of Toilet Flushing Noise Requirements	168
Table 83: Basic Requirement of Production	169
Table 84: Value of Indexes	170
Table 85: Comparison of insulation values of building materials	196
Table 86: Typical U-Values of glazing	196
Table 87: Key passive systems for windows technology.	197
Table 88: Key active systems for windows technology.	198

List of Figures:

Figure 1: Plate Glass Enterprises Process Flow Diagram	58
Figure 2: Clinker Production Process Flow Chart	67
Figure 3: Cement Grinding Technology Flow Chart	67
Figure 4: Enterprise Electricity Consumption	69
Figure 5: Pleat Heating Supply	69
Figure 6: Plant Water Supply/Discharge	69
Figure 7: Domestic Sewage Treatment Schematic	71
Figure 8: Clinker Sintering Section Technological Process	75
Figure 9: Clinker Sintering Section Material Balance Unit: t/d	76
Figure 10: Clinker Sintering Section Water Balance	77
Figure 11: Daily Stoneware and Packaging Ceramics Production Process and Pollution	n
Emission Point	97
Figure 12:Special Ceramics Production Process and Pollution Emission Point	98
Figure 13: Technology Process of Branch Plant #1	121
Figure 14: Raw material balance of Branch Plant #1 (Unit: t/d)	121
Figure 15: Enterprise Water Balance (Unit: t/d)	125
Figure 16: Certification procedure for existing basic award criteria.	176
Figure 17: Certification procedure for new basic award criteria	176
Figure 18: Certification procedure for EU Ecolabel	179
Figure 19: Passive House Label.	179
Figure 20: Cradle to cradle certified product scorecard. (Cradle to Cradle)	181
Figure 21: Certification procedure for Cradle to Cradle	183
Figure 22: Evolution of Green building certification	186
Figure 23: Compound of the Environmental product declarations	193
Figure 24: Module-based dissociation of the LCA.	194
Figure 25: Electrochimic glazing operation	198
Figure 26: Suspended particle devices operation	199
Figure 27: Polymer dispersed liquid crystals devices operation	199
Figure 28: Example of a smart glass technology	200
Figure 29: Enthalpy Profile of the BioPCM.,	200
Figure 30: Passive working delta cool ceiling panels containing inorganic PCM	201
Figure 31: Installation of the active-chilled ceiling system containing PCM-enhanced pl	aster
and plastic micro-tubing - Fraunhofer ISE, Germany	202
Figure 32:Fig. 18: Construction details of a roof assembly containing, reflective insulation	on, and
subventing air channels, followed with two PCM insulation systems produced by Outlas	st, USA.
	202
Figure 33: Experimental attic module containing microencapsulated PCM blended with	1
cellulose insulation, ORNL, USA, testing facility	202
Figure 34: Installation of the test wall containing PCM-enhanced fibreglass insulation	203
Figure 35: Installed BioPCM Mat in the Ceiling.	203
Figure 36: Example of BIPV, PV panels as canopies.	204
Figure 37: Demonstration building from B-first programme	205

Figure 38: Example of transparent PV glass application	
Figure 39: Integrated PV into façade cladding systems in Stuttgart - model	207
Figure 40: BIPV roof shingle modules in Athens.	207

1. Introduction of Cleaner Production Audit

1.1 Concept of Cleaner Production

1.1.1 Basic Concept

The UNEPIE/PAC defines: cleaner production is a new way of creative thinking, which persistently applies an integrated preventive environmental strategy to production processes, products and services in order to increase eco-efficiency and minimize human and environmental risks. For production processes, it requires to save raw materials and energy, eliminate toxic raw materials, reduce the amount and toxicity of all wastes. For products, it requires to minimize the negative impacts of the whole life cycle from raw material extraction to final disposal of products.

The Administrative Center for China's Agenda:21 defines: cleaner production is a practical production method and measure, which could both fulfill human needs and rationally utilize natural resources and energy, as well as protect environment. Its essence is to plan and manage human production activity in the least material and energy consumption way. Reduce, reutilization and detoxicate wastes, or eliminate during production. Meanwhile, as the sustainable development process goes further, the production of green products that are harmless to human and environment will become the predominant direction of future production.

Cleaner Production Promotion Law defines: cleaner production implies the application of improved design and advanced technology and equipment, the usage of clean energy and clean raw materials, and the improvement of management and utilization. Moreover, it includes the prevention of pollution, enhancement of resource utilization efficiency reduction/avoidance of waste generation and emission during the production process and product usage. Finally, both human health and environmental harm is to be minimized/eliminated.

1.1.2 Basic Contents

(1)Process

The definition of cleaner production includes two clean process controls: the whole production process and the whole product cycle.

For production process, cleaner production involves saving raw material and energy, eliminating toxic and harmful raw material, and minimizing to the greatest extent the discharge and toxicity of emissions and wastes before leaving their production process. For products, cleaner production aims at decreasing the impacts on human and environment during the whole product life cycle from raw material extraction to final disposal.

The innovative idea of clean producion: In the past, the focus was on removing contaminants after their production, while the idea of cleaner production implies the elimination of contaminants right from the start.

(2)Goals

According to the requirements of sustainable economic development on resources and environment, cleaner production includes two goals: First, to rationally utilize natural resources and alleviate resource depletion through integrated resource utilization, scarce recourses substitution, secondary energy utilization, energy saving, consumption reduction and water conservation; Second, to reduce the emission of wastes and contaminants, to insure that industrial production and consumption are compatible with environment and to reduce the risks of industrial activities for human health and environment.

1.1.3 Measures

(1)Implement Green Product Design

During the product design process of enterprises implementing cleaner production, first take into account environmental protection, reduce resource consumption, achieve sustainable development strategy; second, consider commercial profit, cost reduction, decrease potential liability risk and enhance competition. Practical measures are: take into account the future modifiability at the beginning of product design, easy to upgrade and basic design that can be used to produce several products, offer substantial opportunity to reduce solid waste contamination. Product design needs to be able to simply upgrade products by redesigning some components, in order to reduce the generation of solid waste. It should also be considered to use less material or more energy saving components during production, give preference to nontoxic, low toxic, low pollution raw and auxiliary material to substitute the high toxic materials, and to prevent human and environmental harm imposed by raw material and products.

(2)Implement Whole Production Process Control

Cleaner production process requires enterprises to use less or no wastes production technology and high efficiency production equipment; use less or no toxic/hazardous raw material; reduce hazards and toxic/hazardous intermediate products during production process; use simple and reliable operation and control; establish good hygienic practices, sanitation standard operation procedure, hazard analysis and key control point; organize the recycling of material; establish comprehensive quality management system, optimize production organization; conduct necessary contamination treatment, achieve a clean and efficient utilization and production.

(3)Implement Material Optimization Management

Material optimization management is a key step of implementing cleaner production. Choosing the material, evaluating chemical usage and estimating lifecycle are all crucial aspects of enhancing material management. During the implementation of cleaner production, enterprises need to consider the reusability and recyclability when choosing the material, those materials have economic and environmental profits through improving environmental quality and reducing production cost; implement proper closed circle flow of material, including material flow during raw material and products recycling process, material flow during products usage process and during production process.

The raw material processing cycle refers to the flow process of natural resources to finished products, as well as a closed process composed of the recycling of wastes generated from exploitation and processing. Material flow during production process is a cyclic process composed by the flowing of materials in the entire production system, and the recycling and processing of wastes generated during this process. All aspects of the production process affect material consumption either directly or indirectly. Material flow during product usage process refers to product usage, maintenance and service processes within the product lifecycle, and the recycling of wastes generated during these processes. Material flow during product recycling process refers to the processing process after product usage, includeing: reusable components, renewable components and non-renewable wastes. In the four aspects of material consumption, we should reduce the amount of wastes or eliminate it completely during the production process. Besides the establishment of a production process which is free from pollution and contamination, also the final products need to be clean.

1.1.4 Implement Procedure

Specific implementation procedures of cleaner production audit include:

(1) Planning and organizing, including getting official support, setting up cleaner production audit team, developing cleaner production audit working plan, launching publicity and education, etc.

(2) Pre-assessment, including enterprises profiles, on-site investigation, main contaminants and their treatment measures, establish audit focuses, set cleaner production goals, propose and implement no-cost / low-cost programs, etc.

(3) Assessment, including audit focus review, check the input, output, and cleaner production potential analysis of key materials, etc.

(4) Program generation and screening, including program summarizing and screening.

(5) Feasibility analysis, including the necessity of investing in measures, modification programs, technology assessment, economic assessment and environmental assessment, etc.

(6) Implementation of the program, including program implementation overview, no-cost/ low-cost programs implementation and results summary, medium-cost/ high-cost programs implementation and results summary, assessment score of cleaner production evaluation indicators.

(7) Sustainable cleaner production, including promote sustainable implementation of cleaner production through organizations and establishing management system, etc.

1.2 Developing History of Cleaner Production

China's cleaner production related activities have a long history. In 1973, the *Environment Protection and Improvement and a Number of Provisions* stated the pollution control guideline "prevention first and prevention & treatment combination", it states the ideology of cleaner production. Since then, the implementation of cleaner production in China has undergone the following five stages of development.

1.2.1 Preliminary Preparation Stage (1973-1988)

In 1973, China formulated the *Environment Protection and Improvement and a Number of Provisions*, which proposed the pollution control guideline "prevention first, prevention & treatment combination". This is the earliest law on cleaner production in China. Since the late 1970s, some enterprises such as Jilin Chemical Corporation carried out a series of technology reformation including "no waste technology", "less waste technology" and "whole production process pollution control". It resulted in many successful cases-this was the preparatory stage of implementing cleaner production in China. In the 1980s, as environmental problems were getting more serious, it was proposed that the fundamental way to eliminate the "three wastes" is technological transformation. The idea of cleaner production is occasionally mentioned in the environmental management policy documents. However, due to the lack of comprehensive regulations, systems and operating guidelines, cleaner production has not become a solution to environmental and development issues.

1.2.2 Introducing and Digesting Stage (1989-1992)

After the UNEP put forward the action plan of implementing cleaner production in 1989, the idea and methods of cleaner production were introduced to China. The governments responded with positivity and the concerned departments and units started to study how to implement cleaner production. In August 1992, the State Council formulated the *Ten Major Measures for Environment and Development*, which suggested that "when starting, rebuilding and expanding projects, the technical level should be advanced, adopt the cleaner production technology with small energy/material consumption and less contamination emission." Cleaner production has become one of the solutions to China's environmental and development issues. Although the importance of cleaner production for environmental protection been recognized during that period, its role was limited by the technical level and capital conditions at that time, coupled with its original irrational industrial structure constraints.

1.2.3 Legislation and Pilot Program Verification Stage (1993-2002)

This stage is where cleaner production developed from a spontaneous stage into the government-organized promotion stage. The basic characteristics of this stage are: establishing cleaner production in legal policy, introducing cleaner production concepts and methodologies, and its promotion and practice in China. During this 10 years, cleaner production has made significant progress. Depended on a variety of

international cooperation projects and domestic demonstration projects, conducting cleaner production verification pilot demonstration projects at the enterprise level, nearly a thousand enterprises carried out cleaner production verification. In the *Energy Conservation Law, Air Pollution Prevention Law, Environmental Noise Pollution Prevention Law* and *Solid Waste Pollution Prevention Law*, etc., the content of cleaner production was added in all of them. On the basis of these laws, the *Law of the People's Republic of China on the Promotion of Cleaner Production* (hereinafter referred to as the "Promotion Law") was passed at the 28th Sessions of Standing Committee of the 9th National People's Congress on June 29, 2002. This was the first special law that regarding pollution prevention as the main content, it's the new milestone of implementing cleaner production in China, marking the legislation of cleaner production.

1.2.4 Establishment and Implementation of Cleaner Production Audit System (2003-2005)

On August 16, 2004 the National Development and Reform Commission, the Ministry of Environmental Protection (formerly the State Environmental Protection Administration) formulated, deliberated and approved the *Interim Measures for Cleaner Production Audit*, put forward the "mandatory cleaner production audit" and gave a clear definition to "cleaner production audit" for the first time. The issue and implementation of *Interim Measures for Cleaner Production Audit* became the milestone for establishing cleaner production audit system. On December 13, 2005 the Ministry of Environmental Protection issued the *Regulations on Key Enterprises Cleaner Production Audit Procedure*, stressed the need for mandatory cleaner production audit procedures and requirements, marking that mandatory cleaner production audit has become regulated.

Promoted by laws and regulations, cleaner production audit has developed from local area and local industry pilot demonstration into rapid full roll-out in all national sectors. Provinces that launched cleaner production audit also expanded from less than 10 into almost 30 nation-wide, including autonomous regions and direct-controlled municipalities. Industry involved expanded from limited industries such as chemical, paper-making, electroplating, construction, etc. into more than 20 including thermal power, mechanical processing, automobiles, construction, steel and pharmacy, etc. According to incomplete statistics, there are more than 17,800 enterprises that pass cleaner production audit in China.

1.2.5 Audit System Developing and Refining Phase (2006-present)

To encourage and guide enterprises to effectively carry out cleaner production, regulate cleaner production audit actions and ensure the effectiveness of energy-saving and emission reduction, the Ministry of Environmental Protection published *Notice on Further Strengthening Key Enterprises Cleaner Production Audit* ((2008) No. 60) on 1st July, 2008. *Key Enterprises Cleaner Production Audit Assessment and Acceptance Implementing Guideline* and *List of Toxic and Hazardous Substances Requiring Major Audit (2nd)* are issued to implement at the

same time as complementary documents, marking the establishment of key enterprises cleaner production audit assessment and acceptance system.

Establishing key enterprises, the *Cleaner Production Audit* assessment and acceptance system is an important part of cleaner production policy. It is an innovation and perfection of the cleaner production audit systemand of great importance to guarantee industrial enterprises cleaner production audit quality as well as raising the implementation rate of medium/high-cost cleaner production plan. It solves the long-standing issues of lacking governmental supervision and lacking safeguard measures for cleaner production audit quality during the implementation of national cleaner production process.

1.3 Legislation and Policy relevant to Cleaner Production Audit

1.3.1 Cleaner Production Promotion Law of the People's Republic of China

On June 29 2002, the 28th Meeting of the Standing Committee of the 9th NPC passed the *Cleaner Production Law* and amended in the 25th Meeting of the Standing Committee of the 11th NPC on February 29, 2012. This is the first special law concerning cleaner production, as well as the world's first law formulated for the purpose of promoting cleaner production. It is formulated to promote governments and enterprises to actively conduct cleaner production. This law summarizes relevant foreign experiences in implementing cleaner production and pollution prevention, makes a series of regulations and measures based on China's cleaner production current status. It is adapted to production and service fields.

The amended *Cleaner Production Promotion Law* has 6 chapters with 40 articles in total.

The first chapter deals with the general principles. It introduces the purpose of legislation, the definition of cleaner production, the scope of application, the management department of cleaner production and the basic policies of implementing cleaner production in China. The purpose of this legislation is mainly to improve the utilization of resources and energy, prevent pollution and promote cleaner production, so as to protect the environment and human health and ultimately achieve sustainable development. The amended *Cleaner Production Promotion Law* provides that the coordination of national cleaner production management department changes from the original administrative department of economy and trade under the State Council to comprehensive coordination departments of cleaner production. Local governments at the country level or aboveshall be responsible for the promotion of cleaner production.

The second chapter is about the promotion of cleaner production. This chapter mainly introduces the relevant policies and plans formulated by the government and its administrative departments on the implementation of cleaner production, including taxation policy, industrial policy and promotion policy. The relevant departments of the State Council shall implement the promotion plan for cleaner production in the key areas and industries. The people's governments at or above the county level shall carry out cleaner production promotion plan to the key projects under its administrative jurisdiction, striving for low consumption and low pollution. The relevant departments should make necessary capital investment in carrying out cleaner production projects, and provide information and services on cleaner production, including cleaner production methods and technologies, etc., formulate and publish guidelines and catalogs of cleaner production, as well as product labels, national standards and industrial standards. It states that relevant departments of the State Council should eliminate technology and equipment that are not eligible for cleaner production within prescribed time periods, e.g. high consumption or heavy pollution technology and equipment that are lagged behind. In addition, cleaner production information and technology should be heavily publicized, including technical training, vocational education, media publicity, etc. This chapter also provides the importance of energy saving and emission reduction in the implementation of cleaner production, and requires governments at all levels to lead the public to pay attention to energy conservation and resource protection.

The third chapter is about the implementation of cleaner production. It mainly regulates on the requirements of specific implementation of cleaner production in production sector, agricultural and service sector. The instructive provisions are:

(1) Instructive provisions on industrial production sectors. Conduct Environmental impact assessment to construction projects, select cleaner production technology that contributes to pollution prevention and raising resources utilization; during technological transformation, enterprises should choose cleaner production technology and equipment to replace the high pollution and high consumption lagged-behind technology and equipment, raw materials used need to be innocuous and harmless or slightly noxious and harmful, reduce the generation of hazardous waste, formulate energy saving and emission reduction measures; products produced need to be healthy and safe, packaging need to be easily degrading and recycling, avoid excessive packaging; make recycling use of the wastes and waste water generated in production process; solid wastes are categorized storage and reasonably disposed; conducting cleaner production audit on wastes generated during production and resource consumption; Involved person in the energy-using entities should timely report energy usage performance.

(2) Instructive provisions on agricultural and service sectors. Agricultural producers should improve the planting technology, reasonably use innocuous and harmless chemical fertilizer, reduce agricultural waste produced, improve the quality of agricultural products, use degradable agricultural films, prevent soil and crop pollution; mining of mineral resources should be uniformly planned, prevent pollution and waste, reasonably exploitation and comprehensively utilization; in terms of transportation, produce and use energy-saving environmental friendly motor vehicles, those high-fuel consumption and high pollution motor vehicles and ships that are unqualified should be eliminated in time; the state encourages the installation of solar energy systems. In addition to these instructive provisions, this chapter also includes relevant voluntary and mandatory provisions. Voluntary provisions include enterprises

to apply for environmental management system certification, signing relevant pollution emission agreements, etc. Mandatory provision refers to that producers are mandatory to fulfill their obligations and undertake legal responsibilities. It mainly regulates on actives including excessive pollution emission that surpasses standards, usage of noxious and harmful substances surpasses standards, products produced or for sale contain noxious and harmful substances that surpasses standards, etc.

The fourth chapter is incentive measures. As the 4th and 6th article in general principles have already pointed out, the state encourages and promotes cleaner production. This chapter mainly introduces the specific incentives to carry out cleaner production, including commendation and reward, financial support, tax preference, etc., mainly to give entities and individuals who actively conduct cleaner production with rewards and preferential policies, and give energy saving emission reduction entities financial subsidies and preferential prices, etc.

The fifth chapter is legal liabilities. It mainly provides to those activities that violate the mandatory rules of this law, are subject to administrative, civil or criminal liabilities. The sixth chapter is supplementary provision, with one article stating the effective date of this law.

Cleaner Production Promotion Law is "the intensive representative of achievements on implementing cleaner production for over 10 years, the new milestone of comprehensive implementation of cleaner production, the inevitable choice of taking the new industrialization path and sustainable development strategy".

1.3.2 Policies Relevant to Cleaner Production

In order to implement the cleaner production special law and achieve goals posed by the *Cleaner Production Promotion Law*, the *State Council*, the *Ministry of Environmental Protection* and other government departments have issued corresponding supporting policies, guidance, regulations and management methods, etc. and thus formulate a regulatory policy system to promote cleaner production. The introduction and implementation of these documents provide a solid foundation for the promotion and implementation of cleaner production.

Time	Government Department	Policy Document	Contribution
2003	Ministry of	Several Suggestions on	
	Environmental	Implementing Cleaner	
	Protection	Production Promotion Law	
	The State Council	The State Council	Propose overall work
		Forwarding 11	planning for promoting
		Commissions Joint	cleaner production.
		Document Suggestions on	
		Cleaner Production	

Table	1:	Policies	for	Cleaner	Produc	tion
1 0.010		1 0110100		01001101		

		Promotion	
	Ministry of	Issued 3 industrial cleaner	
	Environmental	production standards	
	Protection		
2004	Ministry of	Jointly issued Cleaner	Specify that cleaner
	Environmental	Production Audit Interim	production audit includes
	Protection;	Measures (order 16)	voluntary and compulsory
	National		audit for the first time.
	Development and		
	Reform		
	Commission		
2005	The State Council	Decisions on Implementing	Encourage energy saving
		Scientific Outlook on	and consumption reducing,
		Development and	implement cleaner
		Enhancing Environmental	production and compulsory
		Sustainability	audit by law.
	Ministry of	Regulations on Key	Specifically answers "what
	Environmental	Enterprises Cleaner	to audit", "who to audit" and
	Protection	Production Audit Process	"to what extend" for the first
			time, provides substantial
			regulatory and legal basis
			for compulsory cleaner
			production audit. Marking
			production
	Ministry of	Jointly issued 3 industrial	
	Environmental	cleaner production	
	ProtectionNational:	assessment index systems	
	Development and	,	
	Reform		
	Commission		
2006	Ministry of	Issued 17 industrial cleaner	
	Environmental	production standards	
	Protection		
	National	Issued 7 industrial cleaner	
	Development and	production assessment	
	Reform	index systems	
	Commission		
2007	The State Council	Energy Saving and	Specifically proposed
		Emission Reduction	"Comprehensively Promote
		Integrated Working Plan	Cleaner Production"
	National	Issued 14 industrial cleaner	

	Development and	production assessment	
	Reform	index systems	
	Commission		
2008	Environmental	Issued 15 cleaner	
	Protection	production standards	
	Department		
	Environmental	Notice on Further	Specify new requirements
	Protection	Enhancing Key Enterprises	to key enterprises cleaner
	Department	Cleaner Production Audit	roduction audit work in the
		Work	new situation of energy
			saving and emission
			reduction, raised key
			enterprises cleaner
			production audit
			assessment acceptance
			check
2009	Environmental	Issued 12 cleaner	
	Protection	production standards	
	Department		
	National	Jointly issued 6 industrial	
	Development and	cleaner production	
	Reform	assessment index system	
	Commission;		
	Ministry of Industry		
	and Information		
	lechnology		
	Ministry of Industry	Issued Notice on	Specify the working focus
	and Information	Enhancing Cleaner	and tasks of promoting
	lechnology	Production Promotion Work	cleaner production in
		in Industry and	industry and
		Communication Sectors	communication sectors.
	Ministry of	Jointly issued Central	Further regulated the
	FinanceMinistry of	Finance Cleaner	usage and management of
	Industry and	Production Special Funds	centrial financial cleaner
		Management Interim	production special funds,
	lechnology	Measures	clarity applied
			demonstration project,
			promotion demonstration
			project applying for special
0010			Tunas report summanry
2010	Environmental	Notice on Further	Closely combined with the
	Protection	Promoting Key Enterprises	prevention and control of
	Department	Cleaner Production	neavy metal pollution,
			restrain overcapacity and

			redundant construction in some industries, specify the objectives, tasks and requirements for key enterprises cleaner production in the near future. Innovatively
			combine key enterprises
			cleaner production systems
			and current environmental
			management systems in China.
2011	Ministry of Industry	Notice on Application for	
	and Information	2012 Industrial Cleaner	
	Technology	Production Demonstration	
		Projects	
2013	National	General Rules for Cleaner	
	Development and	Production Assessment	
	Reform	Index System (trial)	
	Commission;		
	Environmental		
	Protection		
	Department		
	Ministry of Industry		
	and Information		
	Technology		
2014	National	Revise Cleaner Production	
	Development and	Assessment Index System	
	Reform	for Iron and Steel Industry,	
	Commission;	and Cleaner Production	
	Environmental	Assessment Index System	
	Protection	for Cement Industry	
	Department		
	Ministry of Industry		
	and Information		
	Technology		

2. Index Systems of Evaluation of Building Material Cleaner

Production

The National Development and Reform Commission issued *Evaluation Index System* of Aluminum Cleaner Production Industry on 1st December, 2006, *Evaluation Index* System of Ceramics Cleaner Production Industry and Evaluation Index System of Coating Cleaner Production Industry on 23th April, 2007, the National Development and Reform Commission, Environmental Protection Department and Ministry of Industry and Information Technology jointly issued *Evaluation Index System of Plate Glass Production Industry* on 28th October, 2015. Each evaluation index system will be explained in the following:

2.1 Evaluation Index System of Aluminum Cleaner Production Industry

This index system is used to evaluate the cleaner production level of electrolytic aluminum enterprises, as the main basis for establishing cleaner production advanced enterprises and also provide technical guidance for enterprises to implement cleaner production. This system classifies enterprises cleaner production level into two categories based on the score of a comprehensive evaluation, namely the "Cleaner Production Advanced Enterprise" representing domestic advanced level, and "Cleaner Production Enterprise" representing domestic average level.

Primary Index	Weighted Value	Secondary Index	Unit	Weight- ed Value	Evaluation Reference Value ¹
		Primary aluminum direct current consumption	kw∙h/t.Al	15	13300
(1)Energy Index	35	Aluminum ingot comprehensive AC electricity consumption	kw∙h/t.Al	10	14500
		Current efficiency	%	10	93.5
(2)Resource Index	20	Alumina unit consumption	kg/t.Al	3	1920
		Carbon anode (net consumption) unit consumption	kg/t.Al	2	420
		Carbon anode (gross consumption) unit consumption	kg/t.Al	2	540

Table 2: Quantitive Rating System of Electrolytic Aluminum Production Enterprises

		Fluorinated salt unit consumption	kg/t.Al	3	22	
		Enterprise new water unit consumption	m ³ /t.Al	5	4.5	
		Enterprise industrial water reusage rate	%	5	95	
(2) Droducti		Aluminum ingot qualification rate	%	2	100	
on	10	Average voltage of electrolyzer	V	4	4.13	
Index		Anode effect coefficient	Time/ma chine*da y	4	0.2	
(4)Compre- hensive Utilization Index	15	Electrolyzer gas collection efficiency	%	8	98.5	
		Dry purification of fluorine purification efficiency	%	4	99	
		Dry purification of dust purification efficiency	%	3	99.2	
		Waste water external emission	m ³ /t.Al	3	1.6	
(5)Pollution	20	SO ₂ emission	kg/t.Al	2	5	
Index		Dust emission	kg/t.Al	5	1.3	
		Fluorine emission	kg/t.Al	10	0.8	
Note: 1. Evaluation reference value has the same unit as its corresponding index.						

Table 3: Qualitative Rating System of Electrolytic Aluminum Production Enterprises

Primary Index	Index Value	Secondary Index	Index Value	Note
(1)Compliance to implement the nationally encouraged	30	280kA and above large-scale pre-baked anode electrolyzer	10	Qualitative rating index has no evaluation preference value, the assessment is scored
development of production capacity,		Alumina transport using dense or	5	based on its implementation.

processing equipment and		super-dense phase technology		All the secondary indexes of primary index (1), give		
products		Computer Controlled Alumina Concentration Feeding Technology	5	credits to the adopted ones according to their index score, and no credit to non-adopted ones.		
		The cathode of the electrolyzer uses semi-graphitized or graphitized carbon block	5	of primary index (2), give credits to the non-exist or eliminated ones according to their index score, no credits to the		
		Waste water treatment (secondary) and recycling	5	existed ones. All the secondary indexes of primary index (3), give		
(2)Compliance to implement the nationally required elimination of obsolete production capacity, processing equipment and products.	10	Self-baking anode electrolyzer	10	and verified environmental management systems, give 5 credits to established but unverified systems; give 10 credits to implemented cleaner production audit and		
(3)Establishment of environmental management system	20	Establish environmental management system and certified	10	no/low cost plans, additional 5 credits to implemented medium/high cost plans.		
production audit		Conduct cleaner production audit	10	All the secondary indexes of primary index (4), give		
(4)Compliance to implement environmental	20	Implementation of environmental production "three simultaneous" in construction projects	5	credits to those comply to regulations according to index score, no credit to those who failed to comply to "three simultaneous"		
protection regulations		Implementation of environmental impact assessment system in	5	construction projects, environmental impact assessment construction projects or old pollution		

		construction projects		resources time-limit treatment; no credit to
		Completion of old pollution source limited-time treatment projects	5	failing to comply to pollution emission control requirement, water pollution or air pollution beyond requirement
		Control of pollution discharge	5	amount.
(5)Compliance to implement labor safety regulations		Implementation of labor safety "three simultaneous" in construction projects	5	All secondary indexes of primary index (5) and (6), give credits to complied entities according to index score.
	10	Implementation of safety pre-evaluation system in construction projects	5	
(6)Compliance to implement	10	Implementation of occupational health "three simultaneous" in construction projects	5	
occupational health regulations	10	Implementation of occupational hazard pre-evaluation system in construction projects	5	

2.2 Evaluation Index System of Ceramics Cleaner Production Industry

This index system is used to evaluate the cleaner production level of ceramics enterprises, as the main basis for establishing cleaner production advanced enterprises and also provides technical guidance for enterprises to implement cleaner production. This system classifies enterprises cleaner production level into two categories based on the score of a comprehensive evaluation, namely the "Cleaner Production Advanced Enterprise" representing domestic advanced level, and "Cleaner Production Enterprise" representing domestic average level. Taking into account that the production process and technology are different for domestic ceramics, dry-pressed ceramics tile and sanitary ceramics, this index system has some differences in the contents of secondary indexes and settings of their evaluation preference value and weighted score, based on the actual production characteristics of the three industries. So it is more targeted and operable.

Considering that production process and technology are quite different among dry-pressed ceramics tile, according to the actual production of dry-pressed ceramics tile enterprises and in order to make this index system more operable and corresponding to GB/T4100-2006 *Ceramic Tile*, divide dry-pressed ceramics tile into three types based on water absorption $E \leq 0.5\% \\$, 0.5%<Ee dr , E>10%. The quantitative evaluation, including secondary index references and value settings, are different for these three types of enterprises.

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluatio Reference V	on /alue
(1)Energy Index		Comprehensive energy consumption	kgce/t ceramics	15	1240	
	25	 Biscuit firingprocess consumption 	kgce/t ceramics	②10/n	520	
		Glaze firing process consumption	kgce/t ceramics	③10/n	450	
	15	Enterprise plaster consumption	t/t ceramics	3	0.20	
(2)Resource		Enterprise raw material consumption	t/t ceramics	4	1.20	
Index		Enterprise tons of ceramic	t/t ceramics	5	Ordinary ceramic	22
		consumption of fresh water			Bone ceramic	60
		Industrial water recycling rate	%	3	70	
(3)Production		Plaster model	time	2	Olling	150
Technology	15	usage times		2	Grouting	80
l echnology Index	10	Product lead release	mg/l	3	④Comply wit international	h

Table 4: Quantitive Evaluation and Rating System of Domestic Ceramics Production
Enterprise

					standards		
		Due du et ee desium			5Comply with		
			mg/l	3	internationa	I	
		Telease			standards		
		Decal paper utilization	%	1	99		
		Glaze slip utilization	%	1	99		
		Product qualification rate	%	3	99	99	
		Waste ceramic utilization	%	3	95		
(4)Comprehen -sive Utilization Index		Waste plaster utilization	%	2	98		
		Waste base utilization	%	2	99		
	20	Waste glaze slip recycling rate	%	2	99		
		Fettling clay recycling rate	%	2	98		
		Exhaust heat utilization of kiln	%	5	70		
		Comprehensive utilization product value	yuan/t ceramics	4	150		
		Waste water external emission	m ³ /t ceramics	4	Bone ceramic Ordinary	50	
					ceramic	0.5	
		Waste water PH value		1	6-9		
		total lead	mg/l	3	1.0		
		total cadmium	mg/l	3	0.1		
(5)Pollution	25	COD	mg/l	3	150		
Index	20	SS	mg/l	3	200		
		SO ₂ Emission concentration	mg/m ³	3	1430)	
		Enterprise boundary noise (day)	Leq[dB(A)]	1	65		
		Enterprise boundary noise (night)	Leq[dB(A)]	1	55		

		Smoke (dust) concentration	mg/m ³	3	400	
Note: 1. Evaluation reference value has the same unit as its corresponding index.						
2. ①Only assessed with twice firing						
3 ②③The value of n: n=1 when once firing, n=2 when twice firing						
4 (4) (5) Has the same limit value as GB12651-2003 Contact-Food Ceramic Lead and						
Cadmium Release Limit						

Table 5: Quantitive Rating System of Dry-Pressed Ceramic Tiles	(E ≤0.5%)
Enterprise	

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluatio Reference \	on /alue
		Comprehensiv e energy consumption	kgce/t ceramics	6	400	
(1)Energy Index	25	Spray granulation process consumption	kgce/t ceramics	4	80	
		Drying process consumption	kgce/t ceramics	7	20	
		Firing process consumption	kgce/t ceramics	8	180	
	22	Enterprise raw material consumption	t/t ceramics	8	1.1	
(2)Resource Index		Enterprise tons of ceramic consumption of fresh water	t/t ceramics	8	Polished Unpolished	30 0.64
		Industrial water recycling rate	%	6	97	
	10	Glaze slip utilization	%	2	98	
(3)Production Technology		Radioactivity level		6	A B C	
		Product qualification rate	%	2	98	
(4)Comprehen	20	Waste ceramic	%	4	87	

-sive		utilization			
Utilization		Waste base	2 /		
Index		utilization	%	4	99
		Waste glaze			
		slip recycling	%	2	90
		rate			
		Exhaust heat			
		utilization of	%	5	80
		kiln			
		Comprehensiv	vuon/t		
		e utilization	yuan/t	5	160
		product value	Ceramics		
		Waste water	$m^{3/t}$		
		external	ceramics	4	0.30
		emission	Ceramics		
		Waste water		1	6-0
		PH value			
		COD	mg/l	3	150
		SS	mg/l	3	200
(5)Pollution		SO ₂ Emission	ma/m ³	1	1430
Index	23	concentration	iiig/iii		1450
maex		Enterprise			
		boundary noise	Leq[dB(A)]	2	65
		(day)			
		Enterprise			
		boundary noise	Leq[dB(A)]	2	55
		(night)			
		Smoke (dust)	ma/m ³	1	400
		concentration	mg/m	4	400
Note: 1 Evaluat	ion refe	rence value has the	same unit as its	correspo	nding index.
2 Radioactivity	level is i	mplemented accord	ling to GB6566-2	2001 Con	struction Material
Radionuclide Li	imit				

Table 6: Quantitive Rating System of Dry-Pressed Ceramic Tiles (0.5% $<\!E\!\!<\!\!10\%$) Enterprise

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluation Reference Value
(1)Energy Index	25	Comprehensive energy consumption	kgce/t ceramics	6	220
		Spray granulation	kgce/t ceramics	4	80

		process consumption			
		Drying process consumption	kgce/t ceramics	7	15
		Firing process kgce/t		8	150
		Enterprise raw material consumption	t/t ceramics	8	0.64
(2)Resource Index	22	Enterprise tons of ceramic consumption of fresh water	t/t ceramics	8	0.64
		Industrial water recycling rate	%	6	97
(2) Dra du sti		Glaze slip utilization	%	2	98
(3)Producti- on Technology Index	10	Radioactivity level		6	A B C
		Product qualification rate	%	2	98
	20	Waste ceramic utilization	%	4	87
(4)Compro		Waste base utilization	%	4	99
hensive		Waste glaze slip recycling rate	%	2	90
Index		Exhaust heat utilization of kiln	%	5	80
		Comprehensive utilization product value	yuan/t ceramics	5	160
		Waste water external emission	m ³ /t ceramics	4	0.30
		Waste water PH value		1	6-9
		COD	mg/l	3	150
tion Index	23	SS	mg/l	3	200
tion Index		SO ₂ Emission concentration	mg/m ³	4	1430
		Enterprise boundary noise (day)	Leq[dB(A)]	2	65

		Enterprise		2	55	
		boundary noise	Leq[dB(A)]			
	(night) Smoke (dust) concentration	(night)				
		Smoke (dust)		4	400	
		mg/m	4	400		
Note: 1. Evaluat	ion refere	nce value has the sa	me unit as its co	prresponding	g index.	
2. Radioactivity level is implemented according to GB6566-2001 Construction Material						
Radionuclide Limit						

Table 7: Quantitive Rating System of Dry-Pressed Ceramic Tiles (E>10%) Enterprise

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluation Reference Value
		Comprehensive energy consumption	kgce/t ceramics	6	180
(1)Energy Index	25	spray granulation process consumption	kgce/t ceramics	4	80
		Drying process consumption	kgce/t ceramics	7	15
		Firing processkgce/tconsumptionceramics		8	85
	22	Enterprise raw material t/t ceramics consumption		5	1.3
(2)Resource		Enterprise plaster consumption t/t cerami		6	0.28
Index		Enterprise tons of ceramic consumption of fresh water	t/t ceramics	6	14
		Industrial water recycling rate	%	5	60
(2) Droducti		Plaster model usage times	times	5	90
on Technolo-	10	Glaze slip utilization	%	2	100
gy muex		Product qualification rate	%	3	95
(4)Compre- hensive	20	Waste ceramic utilization	%	5	98

Utilization		Waste plaster	%	3	97
mdex		Waste base	0/	2	00
		utilization	70	2	99
		Waste glaze slip recycling rate	%	3	99
		Exhaust heat utilization of kiln	%	4	97
		Comprehensive utilization product value		3	180
	23	Waste water external emission	m ³ /t ceramics	4	6.45
		Waste water PH value		3	6-9
		COD	mg/l	3	400
		SS	mg/l	3	500
(5)Pollu-		SO ₂ Emission concentration	mg/m ³	3	1430
tion Index		Enterprise boundary noise (day)	Leq[dB(A)]	2	65
		Enterprise boundary noise (night)	Leq[dB(A)]	2	55
		Smoke (dust) concentration	mg/m ³	4	400
Note: 1 Evaluati	on refer	ence value has the san	ne unit as its co	rresponding	index.
2. Radioactivity	level	is implemented accor	rding to GB656	66-2001 C	onstruction Material

Table 8: Quantitive Evaluation and Rating System of Sanitary Ceramics Production Enterprise

Radionuclide Limit

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluation Reference Value
(1)Energy Index	25	Comprehensive energy consumption	kgce/t ceramics	15	350
		Firing process consumption	Firing processkgce/tconsumptionceramics		190
(2)Resource Index	22	Enterprise raw material	t/t ceramics	8	0.64

		consumption					
		Enterprise tons					
		of ceramic			0.04		
		consumption of	t/t ceramics	ð	0.64		
		fresh water					
		Industrial water	0/	0	07		
		recycling rate	%	0	97		
		Glaze slip	0/	2	09		
		utilization	70	2	90		
(3)Production		Dedicectivity			А		
Technology	10	Radioactivity		6	В		
Index		levei			С		
		Product	0/	2	09		
		qualification rate	70	2	90		
		Waste ceramic	0/	1	97		
		utilization	/0	4	07		
		Waste base	%	4	99		
(4)Comprehen	20	utilization	70		55		
-sive		Waste glaze slip	%	2	90		
-Sive		recycling rate	70	2			
Index		Exhaust heat	%	5	80		
Index		utilization of kiln		5	00		
		Comprehensive	vuan/t				
		utilization product	ceramics	5	160		
		value					
		Waste water	m ³ /t	4	0.30		
		external emission	ceramics		0.50		
		Waste water PH		1	6-9		
		value		·			
		COD	mg/l	3	150		
		SS	mg/l	3	200		
		SO ₂ Emission	ma/m ³	4	1430		
(5)Pollution	23	concentration	iiig/iii	-			
Index		Enterprise					
		boundary noise	Leq[dB(A)]	2	65		
		(day)					
		Enterprise					
		boundary noise	Leq[dB(A)]	2	55		
		(night)					
		Smoke (dust)	ma/m ³	4	400		
		concentration	ation				
Note: Evaluation reference value has the same unit as its corresponding index.							

Table 9: Qualitative Evaluation and Rating System of Domestic Ceramics Production Enterprise

Primary Index	Index Value	Secondary Index	Index Value
		More than 70% enterprise products export	5
(1)Compliance to		Lead-free	9
implement the		Low-temperature fast-firing	8
nationally encouraged development of	50	Provincial or above level engineering (technology) center, pilot base	3
technology		Exhaust gas comprehensive utilization	8
(including ceramics cleaner production)		All factory sewage treatment (secondary) and recycling	8
		Comprehensive utilization (or digest) of social wastes	9
(2)Establishment of environmental		Establish and certified environmental management system	10
management system and cleaner production audit	25	Conduct cleaner production audit	15
(3)Compliance to		Implement of environmental "three simultaneous" in construction projects	5
implement environmental	25	Implementation of environmental impact assessment system in construction plans	5
protection regulations		Completion of old pollution source limited-time treatment projects	6
		Control of pollution discharge	9

Note:

1. Qualitative rating index has no evaluation preference value, the assessment is scored based on its implementation;

2. All the secondary indexes of primary index (1), give credits to the adopted ones according to their index value, and no credit to non-adopted ones;

3. All the secondary indexes of primary index (2), give 10 credits to established and verified environmental management systems, give 5 credits to established but unverified systems; give 15 credits to implemented cleaner production audit;

4. All the secondary indexes of primary index (3), give credits to those comply to regulations according to index value;

5. No credit to those who failed to comply to "three simultaneous" construction projects, environmental impact assessment construction projects or old pollution resources

time-limit treatment;

6. For pollution emission total amount requirement, no credit to those both water and air pollution exceeds requirement amount; give 4 credits to either water or air pollution exceeds requirement amount.

2.3 Evaluation Index System of Coating Cleaner Production Industry

This index system is used to evaluate the cleaner production level of ceramics enterprises, as the main basis for establishing cleaner production advanced enterprises and also provide technical guidance for enterprises to implement cleaner production. This system classifies enterprises cleaner production level into two categories based on the score of a comprehensive evaluation, namely the "Cleaner Production Advanced Enterprise" representing domestic advanced level, and "Cleaner Production Enterprise" representing domestic average level.

Cleaner production quantitive and qualitative evaluation index system, index weighted value and evaluation reference value of solvent-based paint enterprises using natural resin or synthetic resin as raw material, are shown in Table 10.

Cleaner production quantitive and qualitative evaluation index system, index weighted value and evaluation reference value of water-based paint enterprises using natural resin or synthetic resin as raw material, are shown in Table 11.

Cleaner production quantitive and qualitative evaluation index system, index weighted value and evaluation reference value of powder-based paint enterprises using natural resin or synthetic resin as raw material, are shown in Table 12.

Primary Index	Weighted Value	Secondary Index		Unit	Weighted Value	Evaluation Reference Value
		Quar	ntitive evaluatio	on index		
(1)Resource and energy consumption index		Raw material consumption		t/t product	11	1.015
	21	Product comprehensive energy consumption		tce/t product	6	0.17
		Fresh water consumption		t/t product	4	0.20
		Waste water		t/t product	2	0.15
		COD in was	ste water	mg/l	3	40
(2)Pollution	12	Exhaust	Xylene	mg/m ³	3	5.0
index	12	gas	Toluene	mg/m ³	2	5.0
		concen-t ration	Dust	mg/m ³	2	4.0
(3)Resource	8	Water recyc	cling rate	%	8	95.0

Table 10: Rating Table of Solvent-Based Paint Cleaner Production

comprehen- sive utilization index						
		Quali	tative evaluation	on index		
		One-time p	ass rate	%	5	≥e-ti
		Implement mandatory	Implement national mandatory standard		2	yes
		1Pass ISO	9001 series			
		quality systection	em	(yes or no)	2	yes
(4)Product feature index	21	Pass Enviro product cer	onmental tification	(yes or no)	2	yes
		Standad adopting	Adopt foreign standard	%	10	≥25
			Adopt national standard	%	8	≥30
		Acquire hazardous chemicals safety production license		(yes or no)	3	yes
(5)Environmen		Acquire fire-control safety production license		(yes or no)	3	yes
management	20	Pass ISO14 certification	4001	(yes or no)	5	yes
and occupa- tional safety and health	38	Number of disease	occupation	Number/ thousand* year	5	≤0.001
INCEX		No fire or ex accidents ir	xplosion n 3 years	(yes or no)	13	yes
		Iniury rate r)er	Number/	9	0
		Injury rate per thousand people		thousand *year	6	≪0.001

Note:

1. Evaluation reference value has the same unit as its corresponding index.

2. If the enterprise simultaneously produce several products in solvent-based painting, then the value of each index depends on the production weighted average of its products.

3. Fresh water consumption refers to production process water consumption (including fresh supplementary water to the recirculating cooling water) and workshop cleaning water consumption (excluding domestic water consumption).

4. Waste water related indexes in pollution index refers to waste water external emission data after end-of-pipe treatment, exhaust gas index refers to production site environmental-related data.
5. The proportion of products adopting foreign standards in the product feature indexes refers to the ratio of product output that directly adopts foreign advanced standards or equivalent foreign advanced standards to the total product output; the proportion of products adopting domestic standards refers to the ratio of product output that adopts higher-than-domestic standards to total product output.

6. Number of occupation disease and injury rate per thousand people are taken as the average of relevant data in 5 years.

Primary Index	Weighted Value	Secondary Index		Unit	Weighted Value	Evaluation Reference Value
		Quanti	itive evaluation i	ndex		
		Raw material o	consumption	t/t product	20	1.015
		Electricity cons	sumption	kWh/t product	10	80
(1)Resource and energy consum-	35	Fresh water consumpti- on	Fresh water Constructi- consumpti- on latex on paint			0.25
ption index (2)Pollution			Water based industrial painting	t/t product	5	0.35
(2) Pollution		Waste water		t/t product	10	0.2
(2)Foliulion	12	COD in waste water		mg/l	5	40.0
Index		Dust in exhaus	st gas	mg/m ³	5	4.0
(3)Resource comprehensi ve utilization index	8	Water recycling rate		%	10	80.0
		Qualita				
		One-time pass	rate	%	6	≥99.0
		Implement nat	ional ndard	(yes or no)	3	yes
		Pass ISO9001 system certific	series quality ation	(yes or no)	3	yes
(4) Product feature index	25	Pass Environm certification	nental product	(yes or no)	3	yes
		Standard	Adopt foreign standard	%	10	≥25
		αυφιιοπ	Adopt national	%	8	≥30

Table 11: Rating Table of Water-Based Paint Cleaner Production

			standard			
		Acquire hazarc chemicals safe license	lous ty production	(yes or no)	1	yes
(5)Environ- mental management	38	Acquire fire-control safety production license		(yes or no)	1	yes
		Pass ISO14001 certification		(yes or no)	5	yes
and occupa- tional safety		Number of occupation disease No fire or explosion accidents in 3 years Injury rate per thousand people		Number/ thousand *year	1	≪0.001
index				(yes or no)	1	yes
				Number/th ousand *year	1	≪0.001

Note:

1.If the enterprise simultaneously produce several products in water-based painting, then the value of each index depends on the production weighted average of its products.

2. Fresh water consumption refers to production process water consumption and workshop cleaning water consumption, excluding raw material and domestic water consumption data.

3. Waste water related indexes in pollution index refers to waste water external emission data after end-of-pipe treatment, exhaust gas index refers to production site environmental-related data.

4. The proportion of products adopting foreign standards in the product feature indexes refers to the ratio of product output that directly adopts foreign advanced standards or equivalent foreign advanced standards to the total product output; the proportion of products adopting domestic standards refers to the ratio of product output that adopts higher-than-domestic standards to total product output.

5. Number of occupation disease and injury rate per thousand people are taken as the average of relevant data in 5 years.

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluation Reference Value
		Quantitive evaluation	tion index		
(1) Descures		Raw material consumption	t/t product	15	1.015
and energy consum-	35	Product comprehensive energy consumption	tce/t product	15	0.17
ption index	-	Fresh water consumption	t/t product	5	0.20

Table 12: Rating Table of Powdered Paint Cleaner Production

(2)Pollution	15	Waste water		t/t product	3	0.15
index	15	Dust in waste	e water	mg/m ³	12	4.0
(3)Resource compre- hensive utilization index	10	Water recycli	Water recycling rate		10	95.0
		Quali	itative evalua	tion index	<u> </u>	
		One-time pas	ss rate	%	6	≥99.0
		Implement national mandatory standard		(yes or no)	3	yes
		Pass ISO9001 series quality system certification		(yes or no)	3	yes
(4)Product feature index	25	Pass Environmental product certification		(yes or no)	3	yes
		Standard	Adopt foreign standard	%	10	≥25
		adoption	Adopt national standard	%	8	≥30
		Acquire hazardous chemicals safety production license		(yes or no)	1	yes
(5)Environ-		Acquire fire-control safety production license		(yes or no)	1	yes
management	15	Pass ISO140 certification	001	(yes or no)	3	yes
tional safety and health	10	Number of or disease	ccupation	Number/ thousand *year	5	≪0.001
index		No fire or exp accidents in 3	olosion 3 years	(yes or no)	2	yes
		Injury rate pe thousand peo	er ople	Number/ thousand *year	3	≪0.001

Note:

1.If the enterprise simultaneously produce several products in powdered painting, then the value of each index depends on the production weighted average of its products.

2. Fresh water consumption refers to production process water consumption (including fresh supplementary water to the recirculating cooling water) and workshop cleaning water consumption (excluding domestic water consumption).

3. Waste water related indexes in pollution index refers to waste water external emission data after end-of-pipe treatment, exhaust gas index refers to production site environmental-related data.

4. The proportion of products adopting foreign standards in the product feature indexes refers to the ratio of product output that directly adopts foreign advanced standards or equivalent foreign advanced standards to the total product output; the proportion of products adopting domestic standards refers to the ratio of product output that adopts higher-than-domestic standards to total product output.

5. Number of occupation disease and injury rate per thousand people are taken as the average of relevant data in 5 years.

2.4 Evaluation Index System of Cement Cleaner Production Industry

This index system regulates cement industry enterprises on cleaner production requirements. It consists of six types including production process and equipment index, resource and energy consumption index, resource comprehensive utilization index, pollution generation index, product feature index and cleaner production management index, etc.

This index system is applicable to the general cement production enterprises, including cement (clinker) production enterprise, cement grinding station cleaner production audit, cleaner production potential and opportunity judgement, cleaner production performance evaluation and cleaner production performance announcement system. It also applies to resource/energy consumption cleaner production management requirements, including cement industry environmental impact evaluation, environmental check, sewage discharge permit and industry access, etc.

No.	Primary Index	Primary Weighted Value	\$	Secondary Index			Secondary Weighted Value	Level 1 Reference Value	Level II Reference Value	Level III Reference Value
1	xabr		Limestone mining and	Mining technolo	ogy	_	0.15	Use top-down level medium-depth hole Self-contained or r equipment or hydr hydraulic excavato	eled mining technolog es millisecond blasting mobile air compressor aulic perforating mach ors, wheeled or crawle	y; g technology; drilling hine, er loader.
2	quipment ir		crusning	Crushing			0.05	One stage crushin	g system	Two stage crushing system
3	d ec			Technology		—	0.08	New type of dry pr	ocess	
4	process an	0.3		Seclo	Single-line cement clinker production	t/d	0 15	≥4000	2000~4000	≥1500
5	Production		Cement production	Scale	Cement grinding system	10 ⁴ t/d	0.15	≥100	≥60	≥30
6	ш			*Equipment	Raw material grinding system	_	0.08	Vertical Grinding or Roller Press Finish Grinding	Mill diameter≥ 4.6m circle grinding ball mill	Mill diameter <i>≥</i> 3.0m

Table 13: Quantitive Rating System of Cement Production Enterprises

						System		
7			Coal powder making system		0.08	Vertic	cal mill or air-swept mi	
8			Cement grinding system (including grinding station ^a)		0.08	Mill diameter≥ 4.2m Roller mill and ball mill combined grinding system or vertical mill	Mill diameter ≥ 3.8m Roller mill and ball mill combined grinding system or circle grinding ball mill with high-efficiency powder concentrator	Mill diameter≥ 3m Circle grinding ball mill or high-fine grinding mill
9		Production proc	ess control level	_	0.05	Use field bus, DCS material quality co management infor	S or PLC control syste ntrol system, producti mation analysis syste	m, raw on m.
10		Cement bulk ca	pacity ^a	%	0.05		≥70	≥50
11		*Environmen -tal protec-	Gas collection system and purification treatment device ^a		0.06	According to HJ 43 integrated gas coll treatment device to equipment that ge to standards.	34 and GB 4915, set u ection system and pu o all production proces nerate air pollutants, e	ip local or rification ss and emission up
12		tion facilities	Unorganized emission control		0.05	Dust effusion equi material treatment storing, etc. should measures such as	pment and workplaces , transportation, loadir d implement control m containment, coverag	s, such as ng and easures, use ge, reduce

						material gap and negative pressure operation, etc. to prevent dust effusion, or negative pressure collecting dusty gas and discharge after purification treatment. Use reasonable process layout, closed in-plant transportation, road hardening, cleaning and watering measures to reduce traffic road dust. Ensure unorganized emission limit complies with GB4915 regulation.
13			Denitrification facility	_	0.04	Use appropriate denitrification facilities to ensure that oxynitride missions is up to standard.
14			Automatic monitoring device		0.04	Install smoke PM, sulfur dioxide and oxynitride automatic monitoring devices on exhaust funnels of cement kiln and kiln-grinding machine, install smoke PM automatic monitoring devices on exhaust funnels of cooling machine, and checked by environmental protection department for normal operation.
15			Noise prevention and control measures ^a		0.02	Encourage the use of low-noise equipment, and have sound insulation, sound absorption, and sound proofing and vibration isolation measures to equipment or production workshop, to reduce noise emission. It is advised to reduce impact on external noise sensitive targets through reasonable production layout, construction building obstruction and greening measures.
16			Solid waste incinera-	_	0.02	The treatment of solid wastes using cement production facilities shall be based on the nature of

					tion control			wastes, in accorda	nce with GB50634 re	quirements
								and the environme	ntal protection technic	al standards
								related to coordina	tion with cement kiln o	on
								hazardous waste d	lisposal. Take relevan	t measures
								and pollution monit	toring, to prevent envi	ronmental
								risks.		
17			*Fresh water cons	sumption per unit cli	inker	t/t	0.15	≪0.3	≪0.5	≪0.75
18			*Comparable clinl	ker comprehensive	coal	kgc	0 17	< 103	< 108	<112
10			consumption (am	ounts to standard co	oal)	e/t	0.17	< 105	< 100	<112
19			* Comparable clin	ker comprehensive	energy	kgc	0 17	≤110	≲115	≲120
10			consumption (am	ounts to standard co	oal)	e/t	0.17		<110	< 120
	ç		* Cement (clinker)) production enterpri	rise	kac				
20	ptio		comparable ceme	ent comprehensive e	energy	e/t		≤88	≪93	≪98
	ung		consumption (am	ounts to standard co	oal) ^b	0,1	0 17			
	suo:	0.2	*Cement grinding	station comparable	e cement	kac	0.17			
21	Ce Ce	0	comprehensive ei	nergy consumption	(amounts to	e/t		≤7	≤7.5	≪8
	our		standard coal) ^a							
22	Res		*Comparable clinl	ker comprehensive	electricity	kW	0.17	≶56	≪60	≪64
			consumption	1		∙h/t	••••			
23			*Comparable	Cement (clinker) p	production	kW		≤85	≪88	≪90
			cement	enterprise		∙h/t			~~~~	~~~~
			comprehensive	Cement arinding s	station	k₩∙	0.17			
24			electricity			h/t		≤32	≤36	≪40
			consumption							
25	Resour-ce	0.1	Industrial waste u	sed in raw material	proportioning	%	0.1	≥10	≥5	≥2
26	compre-	0.1	Substitution rate of	of using combustible	e waste fuel	%	0.13	≥10	≥5	<5

27	hensive		Low grade coal utilization	%	0.02	≥30	≥20	<20
28	utiliza-		*Circulating water utilization ^a	%	0.15	≥95	≥90	≥85
29	tion index		* Kiln system exhaust gas exhaust heat utilization	%	0.15	≥70	≥50	≥30
30			Kiln dust and dust collector recycling rate ^a	%	0.1		100	
31			Mine resources Comprehensive utilization	%	0.15	≥90	≥50	<50
32			Waste and sewage water treatment and recycling rate ^a	%	0.1	Set up sewage treatment station, after treatment 100% reuse	Set up sewage treat after treatment partia discharge	ment station, ally
33			Solid waste used in cement mixture ^a	%	0.1	Confirm to relevan	t product standards	
34	Pollution		*Sulfur dioxide Production	kg/t	0.3	≪0.15	≪0.3	≪0.6
35	genera-	0.2	* Oxynitride (as in NO ₂) production	kg/t	0.5	≤1.8	≤2.4	
36	tion index		*Fluoride (as in total fluorine) production	kg/t	0.2	≤0.006	≪0.008	≪0.01
37	Product		*product percent of pass ^a	%	0.5	Cement and clinke with the relevant re GB/T21372, JC600 <i>Management Regu</i> pass rate should b	er product quality shou equirements of GB175 0 and <i>Cement Enterp</i> <i>ulation</i> , product manuf e 100%.	ld comply 5, GB 13590, rises Q <i>uality</i> factured
38	feature index	0.1	Product environmental quality	_	0.3	Co-processing the products generated relevant pollution of co-processing solid	contained pollutants t d by solid waste shou control standards of ce d waste.	rom cement d meet the ement kiln
39			* Radioactivity	co-processing solid waste. - 0.2 The internal and external exposure index radioactivity specific activity should meet standard.			x of natural t GB6566	

				*Implementation of			In line with national and local relevant environmental
				environmental laws, regulations			laws and regulations, pollutant discharge should
40				and standards	-	0.15	reach national or local discharge standards, total
			Laws and				amount control and sewage discharge permit
			regulations ^a				management requirement.
			regulations	*Implementation of			Set up project EIA, "three simultaneous" system
11				environmental impact		0.15	implementation rate should reach 100%
41				assessment, "three	_	0.15	
				simultaneous" system			
							Confirm to national and domestic relevant industry
12	Cleaner		*Implementation	of industry policios ^a		0.15	policies, do not use outdated technology and
42	produc-		Implementation	or moustry policies		0.15	equipment that are eliminated or prohibited by
	tion	0.1					national and local official orders
	manage-	0.1					Carry out audit according to Cleaner Production
43	ment		Implementation o	f cleaner production audit system ^a	_	0.10	Promotion Law and Cleaner Production Audit Interim
	index						Measure
44				Cleaner production department		0.03	Equipped with cleaner production management
44				setting and personnel allocation ^a		0.05	department and full-time management staff
45				Job training ^a	—	0.02	All job position has regular training
46				Cleaner Production	0/_	0.02	Well-establish management system and strictly
40			Production	Management System ^a	70	0.02	implement
			process control	Stable operation rate of			Purification treatment device and its corresponding
47					0/	0.07	production device synchronous running rate reaches
47				facilities ^a	/0	0.07	100%, ensure that air pollutants such as PM are
							discharged in compliance with standards
48				Raw material and fuel	-	0.04	Establish raw material and fuel quality control

	consumption and quality			system, raw mate	rial and fuel consumption quota
	inspection ^a			management syst	em, install measuring devices or
				meters, to strictly	quantitatively inspect energy
				consumption, mat	erial consumption and water
				consumption	
				Conduct low-temp	perature exhaust heat power
				generation, high-v	oltage inverter, energy
49	Energy-saving management ^a	-	0.05	management cent	er construction, etc.; equipped with
				full-time managem	nent staff; set up third-degree
				energy measuring	system.
				Conduct low-temp	perature exhaust heat power
	Standardized management of	f I		generation, high-v	oltage inverter, energy
50	sewage draining exit ^a	'	0.05	management cent	er construction, etc.; equipped with
	Sewage draining exit			full-time managem	nent staff; set up third-degree
				energy measuring	system.
				Has an	
				integrated	Has an integrated ecological
				ecological	restoration plan, include
				restoration	ecological restoration
				plan, include	management into daily
51	Ecological restoration	-	0.07	ecological	production management. After
				restoration	final slope angle of mining is
				management	formulated, ecological
				into daily	restoration of land destruction
				production	reaches at least 75%
				management.	

						After final slope	
						angle of mining	
						is formulated,	
						ecological	
						restoration of	
						land destruction	
						reaches at least	
						85%	
52		Effective environm	nental contingency plans	_	0.06	Formulate enviro regularly conduct e	nmental contingency plan and environmental contingency drill
						Disclose environr	nental information according to
53				—	0.02	article 19 of M	easures for the Disclosure of
		Environmental info	ormation disclosura ^a			Environmental Info	ormation (Trial Implementation)
						Compile enterprise	es environmental report according
54				-	0.02	to Enterprises E	Environmental Report Compiling
						Guideline (HJ 617)

Note:1. Uninvolved index of cement (clinker) production enterprises are scored as full mark;

2. Cement grinding station only evaluate on indexes labelled with ^a;

3. Indexes labelled with ^b: if percentage of clinker in cement is higher than or lower than 75%, every 1% increase or decrease, comparable cement comprehensive energy consumption increases or decreases according to GB16780 *Cement Energy Consumption Quota per Unit Product,* limit value increases/decreases 1.2kg/t, access value 1.15 kg/t and advanced value 1.0 kg/t;

4. Indexes labelled with * are restrictive index;

5. Enterprises co-processing solid waste with cement kiln, give 3 additional credits to the above score, and then evaluate on cleaner production level.

2.5 Evaluation Index System of Steel Cleaner Production Industry

This index system classifies the enterprise's cleaner production level into three categories based on the score of a comprehensive evaluation - level one represents the domestic cleaner production leading level, level two represents the domestic advanced level and level three represents the domestic average level.

This system classifies cleaner production indexes into 6 categories, namely production technology equipment index, energy-saving and emission-reduction equipment index, resource and energy utilization index, product feature index, pollutant emission control index, and cleaner production management index.

This system is applicable to iron and steel enterprises (with long process flow) cleaner production level evaluation, cleaner production audit; newly expanded reconstruction project environmental impact evaluation, new project audit and approval; enterprises environmental inspection, energy-saving evaluation, etc.

Primary Index			Secondary Index									
Index	Weighted Value	No.	Index	Weighted Value	Level 1 Reference Value	Level II Reference Value	Level III Reference Value					
Production technology equipment and technology	15	1	Distribution rate of coke oven equipment	3	Top mounting coke oven chamber height \geq 7m or tamping coke oven chamber \geq 5.5m, distribution rate \geq 60%	Top mounting coke oven chamber height $\geq 6m$ or tamping coke oven chamber $\geq 5m$, distribution rate \geq 60%	Top mounting coke oven chamber height \geq 6m or tamping coke oven chamber \geq 5m, distribution rate \geq 30%					
		2	Distribution rate of sintering machine equipment	3	Sintering machine larger than 300 m ^{2,} distribution rate≥ 60%	Sintering machine larger than 200 m ^{2,} distribution rate ≥60%	Sintering machine larger than 180 m ^{2,} distribution rate≥60%					
		3	Distribution rate of pelletizing equipment	2	Equipped with belt roaster device or grate-kiln grate rotary kiln device, single-unit equipment pelletizing production scale ≥ 3,000,000t	Equipped with belt roaster device or grate-kiln grate rotary kiln device, single-unit equipment pelletizing production scale ≥2,000,000t	Single-unit equipment pelletizing production scale≥1,200,000t					
		4	Distribution rate of blast furnace equipment	3	Blas furnace over 3000m ³ ,distribution rate≥ 60%	Blas furnace over 2000m ³ ,distribution rate≥ 60%	Blas furnace over 1000m ³ ,distribution rate100%					
		5	Distribution rate of converter equipment	2	Converter over 200t,distribution rate≥60%	Converter over 150t,distribution rate≥60%	Converter over 120t,distribution rate 100%					

Table 14: Evaluation Index of Cleaner Production of Iron and Steel Production Enterprise

			Iron-steel high		Using this technology, hot	Using this technology, hot	Using this technology,
		6	efficiency	1	metal temperature drop \leqslant	metal temperature drop≤	hot metal temperature
		0	connecting	I	80°C	100°C	drop≪130℃
			technology				
			Hot-charging and		Hot charging temperature \geq	Hot charging temperature \geq	Hot charging
			hot-transportation		600 $^\circ$ C, hot charging rate \geq	500°C, hot charging rate \geq	temperature≥400°C, hot
		7	of continuous	1	60%	50%	charging rate≥40%
			casting slabs tech				
			nology				
			Raw material plant		Raw material plant achieves	Raw material plant achieves de	ust screen, large-scale
ent and		1	pollution control	2	full-closed, large-scale	mechanized technology	
			technology		mechanized technology		
mqi					High temperature high		
nbe		2	Coke quenching	15	pressure dry-quenching		
uo		2	equipment	1.5	device, quenching amount \geq		
ucti					60%		
-red ogy	20		Coke oven gas		H2S≪150mg/m3,	$H_2S{\leqslant}200$ mg/m ³ , HCN \leqslant	$H_2S{\leqslant}250$ mg/m ³ , HCN ${\leqslant}$
Ionr		3	desulfurization	2	HCN≪150mg/m3	180 mg/m ³	200mg/m ³
niss tech		5	and decyanation	2			
der			equipment				
'ing and		Л	Coal moisture	15	Using this technology, fired	Using this technology, fired	
		-	control technology	1.0	coal material≥60%	coal material≥40%	
-sav			Minipellet sintering		Use minipellet sintering	Use minipellet sintering	Use minipellet sintering
rgy		5	technology and	15	technology and deep-bed	technology and deep-bed	technology and deep-bed
Ene		5	deep-bed sintering	1.5	sintering operation (deep-bed	sintering operation	sintering operation
			operation		sintering≥600mm)	(deep-bed sintering \geqslant	(deep-bed sintering \geqslant

						500mm)	400mm)
	r	6	Sintering exhaust heat recycling equipment	1.5	Equipped with Sintering exhaust heat recycling equipment, recycled exhaust heat ≥10kgce/t mine	Quipped with Sintering exhaust heat recycling equipment, recycled exhaust heat ≥8kgce/t mine	Use minipellet sintering technology and deep-bed sintering operation (deep-bed sintering≥ 400mm)
	-	7	Sintering smoke comprehensive purification technology	1.5	Use comprehensive fuel gas purification technology with sintering machine desulfurization, denitration, dedioxin and heavy metal dust	Use comprehensive fuel gas purification technology with sintering machine desulfurization and denitration,	Use fuel gas purification technology with sintering machine desulfurization
		8	Blast furnace gas dry dedusting device distribution rate %	1.5	100	≥80	≥50
		9	Equipped with blast furnace top gas exhaust heat (TRT or BPRT) utilization device	2	TRT device distribution rate 100%, electricity generation ≥ 40kWh/t iron; or BPRT device distribution rate ≥50%, electricity saving ≥40%	TRT device distribution rate 100%, electricity generation \geq 30kWh/t iron; or BPRT device distribution rate \geq 30%, electricity saving \geq 30%	TRT device distribution rate 100%, electricity generation≥26kWh/t iron; or BPRT device distribution rate≥30%, electricity saving≥20%
	-	10	Equipped with converter gas dry deducting device Regenerative	1.5	Device distribution rate 100%, PM concentration at exit <20mg/Nm ³ Use all ironmaking.	Device distribution rate ≥ 60%, PM concentration at exit<30mg/Nm ³ Use ironmaking and steel	Device distribution rate ≥ 30%, PM concentration at exit < 50mg/Nm ³ Use steel rolling process
		11	Regenerative	1.5	ose an nonmaking,		

				1			· · · · · · · · · · · · · · · · · · ·
			combustion		steelmaking and steel rolling	rolling process	
			technology		process		
		12			Set up with centralized	Set up with centralized	
			Controlized		treatment facility for sewage	treatment facility for sewage	Set up with centralized
					water of the whole plant, total	water of the whole plant,	treatment facility for
			for sources water	2	water recycling \geq 80%, of	total water recycling≥80%,	sewage water of the
			for sewage water		which deep processing water	of which deep processing	whole plant, total water
			of whole plant		is no less than 50% of total	water is no less than 30% of	recycling≥80%
					recycling	total recycling	
			Coking process				
		1	energy			< 405	~
F			consumption	3	≦115	≦125	≦155
			kgce/t coke				
ptio			Sintering process		≤50		
lun		2	energy	2		< 50	< 50
suo			consumption			≦53	≪56
N N			kgce/t mine				
Jerç	20		P process energy				
d er		3	consumption	1	≤21	≤26	≪36
an			kgce/t mine				
Resource			Ironmaking				
			process energy				
		4	consumption	3.5	≪390	≪417	≪446
			kgce/t iron*				
			Blast furnace fuel				
		5	ratio kg/t iron	2	≪490	≤520	≦540

		6	Hot-blast stove blast temperature°C	1	≥1240	≥1200	≥1180
		7	C technology energy consumption kgce/t steel	2	≤-20	≤-8	≤0
		8	Converter steelmaking steel consumption kg/t	1	≤1080	≤1090	≤1100
			Production use fresh waster m3 water/t steel*	2	≤3.5	≤3.8	≪4.1
		10	Proportion of secondary energy electricity generation to total electricity consumption %	1.5	≥45	≥35	≥25
Product features	5	11	Steel material yield (hot padding/hot and cold padding/hot padding, cold padding and	2	≥99/≥98/≥96	≥98/≥96/≥94	≥97/≥94/≥92

			coating) %				
		2	Steel quality pass rate %	1	≥99.8	≥99.5	≥99
		3	Steel quality superior rate %	2	≥50	≥30	≥20
	15	1	Waste water emission m ³ /t steel	1.5	≤1.4	≤1.6	≤1.8
control		2	COD emission kg/steel	3	≪0.06	≪0.08	≪0.10
nission		3	Ammonia nitrogen emission kg/t steel	3	≪0.006	≪0.010	≪0.013
utant er		4	PM emission kg/t steel		≪0.60	≪0.80	≤1.0
Pollt		5	SO ₂ emission kg/t steel		≤0.80	≤1.2	≤1.6
		6	NOx emission (as in NO ₂) kg/t steel	3	≪0.9	≤1.2	≤1.8
insive		1	Production water recycling rate %	3	≥97	≥96	≥95
Resource compreher utilization	15	2	Blast furnace gas utilization %	2	≥98	≥97	≥95
	61	3	Coke oven gas utilization %	2	≥99	≥97	≥95
		4	Converter gas recycled heat	2	≥28	≥23	≥18

			kgce/t steel					
			Iron-containing					
		5	dust (slime)	1	100	≥98	≥95	
			recycling rate %					
		6	Blast furnace	4	100	~ 00	>05	
		ю	slagutilization %	I	100	<i>≥</i> 98	≈90	
		7	Converter slag	4	100	>05	> 00	
		1	utilization %	I	100	≈90	≥90	
			Liquid iron					
			pre-treatment,					
	8	refine equipment,		≥98	>00	>80		
		steel ladle, etc.	I		≥90	≥80		
			scrap iron					
			utilization %					
			Desulfurization	1	≥90	≥70	≥50	
		9	by-product					
			utilization%					
		10	Absorb municipal	1	Absorb and utilize municipal sewage or utilized water accounted for≥30% of enterprise			
		10	sewage	I	water intake			
c		1	*Compliance of	15	Did not use production technolog	gy or devices that are officially p	rohibited or eliminated by	
at ior		I	product policy	1.5	the state, did not produce officially prohibited products.			
produc agemen		2	Emission up to	1	Enterprise pollutant emission co	ncentration complies with the na	tional and local relevant	
	10	۷	standard*	I	requirements			
aner		3	Total volume	15	Enterprise pollutant emission vol	lume and total energy consumpt	ion complies with the	
Clea		3	control*	1.0	national and local relevant require	rements		
Ŭ		4	Environmental	1.5	In accordance with national relev	ant requirements, establish sou	nd environmental	

			pollution accident		management system and pollution	on accident prevention measure	s, prevent the occurrence
			prevention*		of major environmental pollution	accidents	
					Establish GB/T24001	Establish GB/T24001	Establish GB/T24001
					environmental management	environmental management	environmental
					system, and obtain	system, and effectively	management system,
					certification, effectively	functioning; fulfill annual	and effectively
		5			functioning; completely fulfill	environmental targets,	functioning; fulfill annual
					annual environmental targets,	indexes and environmental	environmental targets,
					indexes and environmental	management plans≥80%,	indexes and
			Establish a sound		management plans, reach the	reach the requirements of	environmental
			environmental	0 5	requirements of continually	continually improvement of	management plans \geqslant
			management	0.5	improvement of environment;	environment; environmental	60%, partially reach the
			system		environmental management	management manual,	requirements of
					manual, procedure document	procedure document and	continually improvement
					and working document are	working document are	of environment;
					complete and valid	complete and valid	environmental
							management manual,
							procedure document and
							working document are
							complete
					Establish relevant	Establish relevant	Establish relevant
					management system, ledger	management system,	management system,
		6	Hazardous waste	1	booking, transfer manifest are	ledger booking, transfer	ledger booking, transfer
		U	safe disposal	I	complete. After hazard-free	manifest are complete. After	manifest are complete.
					treatment comprehensive	hazard-free treatment	After hazard-free
					utilization≥80%	comprehensive utilization \geq	treatment comprehensive

						70%	utilization≥50%
					Establish full-time leading	Establish full-time leading	Establish part-time
					institution for cleaner	institution for cleaner	leading institution for
					production, all member units	production, all member units	cleaner production, all
					and personnel in-charge have	and personnel in-charge	member units and
					clear job division; has sound	have clear job division; has	personnel in-charge have
					cleaner production	sound cleaner production	clear job division; has
					management system and	management system and	cleaner production
					incentive management	incentive management	management system and
			Cleaner		measure, implementation	measure, implementation	incentive management
	7		production		performance check record;	performance check record;	measure, implementation
		7	organization	1	formulate cleaner production	formulate cleaner	performance check
			institution and		work planning and annual	production work planning	record; formulate cleaner
			management		work planning, organized and	and annual work planning,	production work planning
			system		implement the targets,	organized and implement	and annual work
					indexes and cleaner	the targets, indexes and	planning, organized and
					production plans raised in	cleaner production plans	implement the targets,
					planning; targets, indexes	raised in planning; targets,	indexes and cleaner
					and plans implementation	indexes and plans	production plans raised
					rate≥80%	implementation rate≥70%	in planning; targets,
							indexes and plans
							implementation rate \geq
							60%
			Cleaner		In accordance with	In accordance with	In accordance with
	8	8	8 Cleaner	0.5	government requirements,	government requirements,	government
					establish cleaner production	establish cleaner production	requirements, establish

				audit working plan, regularly	audit working plan, regularly	cleaner production audit
				carry out cleaner production	carry out cleaner production	working plan, regularly
				audit activities to the whole	audit activities to the whole	carry out cleaner
				process of steel production,	process of steel production,	production audit activities
				high/medium-cost plan	high/medium-cost plan	to partial process of steel
				implementation rate \geq 80%,	implementation rate \geq 60%,	production,
				achieve significant result of	achieve significant result of	high/medium-cost plan
				energy saving, consumption	energy saving, consumption	implementation rate \geq
				reduction and pollution	reduction and pollution	50%, achieve significant
				reduction	reduction	result of energy saving,
						consumption reduction
						and pollution reduction
				Has sound energy	Has sound energy	Has energy management
				management institution and	management institution and	institution and
				management system, all	management system, all	management system, all
		France		member units and personnel	member units and	member units and
		Energy		in-charge have clear job	personnel in-charge have	personnel in-charge have
		inatiagement		division, and play their role	clear job division, and play	clear job division, and
	0	monogoment	4	effectively; establish energy	their role effectively;	play their role effectively;
	9		I	management institution and	establish energy	establish energy
		system, energy		effectively functioning; has	management planning and	management annual
	management and control center			energy management control	annual working plan, and	working plan; formulate
		control center		center, formulate enterprise	organizing implementation;	enterprise energy using
				energy using and energy	has energy management	and energy saving
				saving development planning,	control center, formulate	development planning,
				annual controlled target	enterprise energy using and	annual controlled target

				completion≥90%	energy saving development	completion≥70%
					planning, annual controlled	
					target completion≥80%	
				In accordance to national	In accordance to national	In accordance to national
				requirements, organizing	requirements, organizing	requirements, organizing
				energy saving evaluation and	energy saving evaluation	energy saving evaluation
				energy audit work, discover	and energy audit work,	and energy audit work,
				energy saving potential from	discover energy saving	discover energy saving
				three aspects, structure	potential from three	potential from
		Carry out		energy saving, management	aspects, structure energy	management energy
	10	energy-saving	0.5	energy saving and technology	saving, management	saving; implement
		activities		energy saving; implement	energy saving and	energy saving
				energy saving reconstruction	technology energy saving;	reconstruction project
				project completion 100%,	implement energy saving	completion≥50%,
				annual energy saving task	reconstruction project	annual energy saving
				reaches national requirement.	completion≥70%, annual	task reaches national
					energy saving task reaches	requirement.
					national requirement.	
Total			100			

2.6 Evaluation Index System of Plate Glass Production Industry

This index system regulates the general requirements of plate glass industrial enterprises cleaner production. It is not applicable to electronics industry ultra-thin glasses under 1.1mm, automobile front windshield glasses under 2mm, ultra-clear plate glasses produced using calendaring technology and other special glasses with non-soda-lime-silica as main component. This system classifies cleaner production indexes into 6 categories, namely production technology and equipment index, resource and energy consumption index, resource comprehensive utilization index, pollution generation index, product feature index, and cleaner production management index.

This system is applicable to plate glass enterprises in cleaner production audit, cleaner production potential and opportunity estimation, cleaner production performance evaluation and cleaner production performance announcement, environmental impact evaluation, pollution emission permit, environmental leader and management system.

No.	Primary index	Primary weight	Secondary index	Unit	Secon- dary weight	Level I reference value	Level II reference value	Level III reference value
1			Plate glass manufacturing technology*		0.1	Float glass process		
2			Glass production single line melting capacity	t/d	0.2	900	700	500
3			Design kiln age	а	0.15	12	10	8
4	Production		All fuel variety*		0.3	Natural gas		Heavy oil, Coal gas (caloricity≥ 10454kJ/Nm3)
5	technology and equipment index	0.2	Heating and burning method		0.25	Oxygen-fuel combustion	Use residual oxygen utilization measures and electric boosting, e.g. oxygen-enriched combustion, 0# port xygen lance, etc.	Air fuel combustion
6	Resource and energy	0.25	*comprehensive energy consumption per unit plate glass product ^a	kgce/weight case	0.3	12	13.5	14.0
7	index		*Plate glass melting furnace heat consumption ^a	kJ/kg glass liquid	0.3	5650	6400	6700

8 9 10			 (do not corrected for kiln age coefficient and fuel effect coefficient) Tin consumption Mirabilite content rate Water intake 	g/ weight case % m ³ / weight case	0.1 0.1 0.2	0.7 2.0 0.002	1.5 3.0 0.005	2.0 3.5 0.008
11			*Self-produced waste glass recycling rate	%	0.2		100	
12			Industrial waste water recycling rate	%	0.2	100	95	90
13	Resource comprehen- sive utilization index	0.15	Glass melting furnace exhaus recycling	st heat	0.2	Dust exhaust heat electricity generation technology beavy oil heavy oil heav		Dust exhaust heat used to batch pre-heating, heavy oil heating or set up exhaust heat boiler
14			Raw material workshop dust recycling rate	%	0.2		100	
15			Magnesite-chrome brick recycling rate	%	0.2		100	
16	Pollution generation	0.2	Waste water generation	m ³ / weight case	0.1	0.001	0.0025	0.004
17	index		CODcr generation	g/weight case	0.1	0.04	0.12	0.4

18			SS generation	g/ weight case	0.05	0.06	0.2	0.4
19			*SO ₂ generation	kg/ weight case	0.3	0.1	0.2	0.37
20			*NOx generation	kg/ weight case	0.3	0.1	0.25	0.35
21			* PM generation	kg/weight case	0.15	0.015	0.025	0.035
22			Product quality		0.4	Superior quality	Superior quality rate 80% Meet the GB11614 standard	
23	Product feature index	0.1	Product application field		0.3	Glass making and automobile front windshield	Deep processing	Other uses
24	24		Production energy-saving and solar energy applied products		0.3	On-line TCO, or solar control coa	On-line TCO, on-line LOW-E or solar control coated glass others	
25	Cleaner production management index	0.1	*Implementation performance of environmental laws and regulations		0.14	Comply with national and local relevant environmenta laws, regulations, waste water, waste gas, noises, etc pollutant emission, solid waste treatment and disposa complies with national and local emission (control) standard; pollutant emission should meet national and local pollution emission volume control index and pollution discharge management requirement		ant environmental e gas, noises, etc. nent and disposal ssion (control) neet national and ol index and uirement.
26			*Implementation performance of industry policies		0.14	Production scale complies with national and local relevant industry policies, do not use national and local official prohibited or eliminated technology and		nal and local national and local ology and

				equipment		
27		*Cleaner production audit performance	0.09	In accordance with national and local requirement,		
21		Cleaner production addit performance	0.00	conduct cleaner production audit		
28	28	Environmental management system	0.08	In accordance with GB/T 24001, set up and run environmental management system, environmental management system document and working document are complete	Well-established environmental management system and complete management documents	
29		Waste gas treatment facility operation management	0.08	Establish pollution treatment facility of	operation ledger	
30		Pollutant emission monitoring	0.08	In accordance to the requirements of Pollution Sour Automatic Monitoring Management Measures, insta smoke pollutants emission automatic monitoring devices, and networking with monitoring device of environmental protection department, and ensure th well-functioning of devices.		
31		Energy management system	0.08	In accordance with GB/T 23331 requirement, establish and run energy management system, energy measuring devices are equipped in compliance with GB 17167 requirement	Energy measuring devices are equipped in compliance with GB 17167 requirement	
32		Environmental management system and	0.08	Has well-established environmental	management	

			institution		system; set up specialized environm	ental management	
					institution and specialized managem	nent personnel.	
					Establish contingency plan to enviro	nmental accidents	
33			Environmental contingency	0.08	in the system, filling and conduct em	nergency drill in	
					accordance with regulations.		
34		-	Environmental information disclosure	0.08	Disclose environmental information in accordance with <i>Measures for the Disclosure of</i> <i>Environmental Information (Trial</i> <i>Implementation)</i> the19th article	Disclose environmental information in accordance with <i>Measures for the</i> <i>Disclosure of</i> <i>Environmental</i> <i>Information (Trial</i> <i>Implementation)</i> t he 20th article	
0.5				0.00	Compile enterprises environmental r	ises environmental report book in	
35				0.08	accordance with HJ 617		
Note 1.	For glass enterprise	s that proc	duce thin plate under 4mm and thick plate abov	ve 12mm, us	e data from 5mm transparent plate gl	asses produced by	
melting	furnace to compare v	with this ta	ble.				
Note 2. indexes with * are definitive index							
a. In accordance with GB 21340-2013 regulations, the evaluation object of this index excludes oxygen-fuel combustion glass melting furnace. The index of							
this	this type of melting furnace equates fulfilling level I reference value requirement.						

3. Case Analysis of Cleaner Production of China Building

Material Industry

Until now China has carried out 5 cleaner production audits, in total 17862 enterprises passed the audit. Then take examples as plate glass enterprises, cement enterprises and ceramics enterprises in construction industry, according to the operation procedure, introduce how they conduct cleaner production audit from simple to complex.

3.1 Case Analysis of Plate Glass Cleaner Production Industry

China is a big plate glass production country, the scale of production has ranked top 1 worldwide for 20 consecutive years. In 2012, the annual plate glass production reached 760 million weight case with a total sale of 722 million weight case. It is estimated that, flat glass industry production capacity has exceeded the market demand for nearly 40%, while capacity utilization only accounts for 63%. SO, redundant construction and over capacity problems in the industry are quite severe. Meanwhile, plate glass industry is a high energy consumption and resource intensive industry, the Ministry of Environmental Protection issued Notice on Advancing Key Enterprises Cleaner Production (EL No. [2010]54) and Notice of the General Office of the State Council on Implementing Suppressing Overcapacity and Redundant Construction in Some Industries for the Division of Work for Key Departments (General Office of the State Council No. [2009]116), etc. It referrs to public steel, cement and glass products and takes seven over capacity major industries as the focus of implementing cleaner production audit in accordance with the laws, and actively guide and supervise key enterprises to conduct cleaner production. Cleaner Production for plate glass industry fundamentally contributes to reduce resource and energy consumption, mitigate environmental pollution and ensure continuous improvement of environmental quality.

3.1.1 Enterprise Cases

(1) Enterprise Introduction

A plate glass production enterprise is an integrated enterprise that combines glass, coke and fine coal. Its main products are plate glasses of all sizes and according by-products are coke, coke gas and coking tar. The coke furnace production line produces coke gas and coking tar as main fuels for sheet glass production. The produced coke is supplied to the market. So, gas production and coal production lines are combined, both ensuring clean coal for coke production and also reducing coal production costs. Moreover, waste coal, middling coal and drystone can be used by paper mill.

(2) Main Technological Process and Pollution Generation Link

During the production process, pollution is mainly caused by gas emissions. In addition, there is waste water and domestic sewage, generated during production and maintenance processes. Solid wastes mainly come from raw material workshop wastes, glass falling out during transportation and disposal, and waste material from cold repair process, etc. The block diagram of main pollution factors generated during process flow and production process see Figure 1.

Figure 1: Plate Glass Enterprises Process Flow Diagram

(3) Enterprises Cleaner Production Status Quo and Existing Major Problems

Through an investigation and analysis to the whole plant it is shown that, although the enterprise adopted the improved sheet production technology, there are still some cleaner production indexes failing to meet domestic basic level requirement. From the aspect of key indexes composition, in some definable targets, especially indexes concern material consumption, energy consumption and pollution emission, there are still some gaps. This is mainly due to some problems during production process, that the current cleaner production level can be improved. The comparison with plate glass industry cleaner production indexes see Table 16.

Table 16: Index Value Comparison between One Plate Glass Enterprise and Requirements

Project	Level I	Level II	Level III	Compari- son Level
1.Resource and Energy				
Utilization Index				
(1).Plate glass				
comprehensive energy	≤13	≤18.5	≤20	Level 3
consumption per unit				
(2).Electricity				
consumption	≪6.5	≤7.5	≤8.6	Level 2
(kW.h/weight case)				
(6) Mirabilite containment	≶20	≤3.5	≤50	Level 3
rate %	~2.0	~0.0		
2.Product Index				
(1).Total yield %	≥88	≥85	≥75	Level 2
No. of glass bubble per m ²	0.3	3mm≤L≤0.5mm:2		Level 1
3.Waste recycling index				
(1).Glass recycling rate%		100		Level 1
(2).Industrial waste water	100	≥90	≥80	Level 3
recycling rate%	100	200	> 00	Lovero
(3).Raw material				
workshop dust recycling			Level 1	
rate%				
(4).Magnesium and		l evel 1		
cadmium recycling rate		100	1	
4.Pollution generation				
index				
(1).Waste water				
generation (m ³ / weight	≪0.05	≪0.10	≪0.16	Level 3
case)				
(2).COD generation	≶2	≶5	≤16	Level 2
(g/weight case)				
(3).SS generation	≤3	≤8	≤15	Level 3
(g/weight case)				
(4).SO ₂ generation	≪0.11	≪0.44	≪0.61	Level 2
(g/weight case)				
(5).NOx generation	≪0.4	≤0.6	≤0.8	Level 3
(kg/weight case)				
(6).PM generation	≪0.072	≤0.096	≪0.120	Level 3
(kg/weight case)				
5.Environmental				
Management				
Requirements				

(1).Cleaner Production Audit	Carry out audit in accordance with enterprises cleaner production audit guideline compiled by State Environmental Protection Administration	Level 1
(2).Environmental Management System	Establish and operate environmental management system in accordance with ISO14001, environmental management manual, procedure document and working document are complete, environmental management system is sound, raw record and statistical data are complete and valid.	Level 2

It is shown from Table 16 that there are 5 indexes reaching Level 1, which is 25% of total indexes; 5 reaching level 2, 25% of total indexes; 7 reaching Level 3, 35% of total indexes

(4) Existing Major Problems for Enterprises

Currently, some major problems for enterprises exist: firstly, the reservoir water is not recycled. During the melting procedure, large amounts of cooling water and high temperature water enter the reservoir, mostly directly discharged into the trench. This does not only waste huge water resource but also causes thermal pollution. Secondly, the idling of themotor. Some motors in the melting furnace workshop often operates idling, it is non-economical operation and sever waste of electricity energy. Thirdly, gas generator furnace has huge energy consumption and low efficiency. Coal-based gas generator furnace provides fuel to the combustion of glass melting furnace. It not only severely wastes huge energy resources but also discharge a large amount of hazardous gas into the atmosphere including CO₂ CO₂ SO₂ and NOx, etc. Severely damages the environment and cause huge pollution. Lastly, the furnace kiln has poor heat preservation and heat loss is severe. High energy consumption of glass production is a major common fault of domestic plate glass industry. Around 30% heat is diffused into the air from the kiln surface. It's not only a waste of energy but also deteriorates production operation environment; around 40% heat enters the funnel along with waste gas, wastes huge amount of coal every year.

3.1.2 Cleaner Production Scheme

(1) The Formulation and Screening of Cleaner Production Scheme

On the existing enterprises problems, cleaner production scheme is formulated after an evaluation and analysis on the overall production of enterprises, the usage of material and energy and all kinds of balances. The relevant enterprises leaders, technician and on-site operator and technical experts inside and outside plant together prioritize and screen out no cost/low cost scheme and medium/high cost scheme, based on technical feasibility, environmental effect, investment funds and benefit. Then cleaner production audit team, industry experts and cleaner production audit experts' three-party discussion on the proposed cleaner production scheme, from three aspects of environment, technology and economic condition. Finally establish 11 cleaner production audit implementation schemes, including 8 no/low cost ones and 3 medium/high cost ones. The specific cleaner production scheme and progress see Table 17.

NO.		Plan	Completion
	LF1	Cooling water reservoir pipeline reform	Completed
	LF2	Electricity technology reform	Completed
	LF3	Gas pressing machine and cooling machine improvement	Completed
No/low	LF4	Install automatic watering system to water tower	Completed
cost plan	LF5	Melting furnace workshop and horizontal drawing workshop green lighting	Completed
	LF6	Raw material dust recycling	Completed
	LF7	Raw coal and powdered coal recycling and cleansing	Completed
	LF8	Enhance material management	Completed
Medium/	HF1	Gas generator furnace turning into coke oven gas production line	Completed
high cost	HF2	Furnace all-around thermal insulation and energy saving	Completed
plan	HF3	Install cooling tower, build reservoir to reduce water temperature	Completed

Table 17: Overview of Cleaner Production Plans

(2) Cleaner Production Three-Benefits Analysis

With the implementation of enterprise cleaner production scheme, all cleaner production indicators have been improved, and achieved significant social, economic and environmental benefits. This round of cleaner production generated 11 feasible cleaner production schemes with a total investment of 20,997,900 yuan. After the scheme implementation is complete, the total annual operational costs arereduced by 36,608,300 yuan compared to pre-audit years. After all schemes are implemented, the annual saving is 887,300kW·h, waster saving 1,100t, coal saving 47,300t, SO₂ reduction 1052.66t/year.

3.2 Case Analysis of Cement Cleaner Production Industry

3.2.1 Introduction of Cleaner Production Program

The cement industry is illustrated using this cement enterprise as an example. Enhancing environmental awareness, improving resource and energy utilization, fulfilling the comprehensive recycling and utilization of production "three wastes", eliminating pollution hazard, have always been the works for this enterprise. With the continuously deepening of "create a conservation-oriented society" and enterprise's own need for development, enterprises are paying more and more attention to cleaner production. In the beginning of 2011, the enterprise hired cleaner production experts for facilitation and guidance for multiple times. Held "cleaner production" symposium, "cleaner production knowledge" tutorial lecture to above enterprise-manager staff, and held in-depth discussion with enterprise leaders. The enterprise set up a sound audit team and had comprehensive staff training in different forms. Long-term cleaner production audit team is formulated under the leadership of chief responsible person, to be responsible for the cleaner production work within the enterprise, and make cleaner production a powerful management measure for the enterprise. Include continuous improvement of cleaner production into enterprise development planning, to further promote the rapid, sustained and stable development of the enterprise, to improve overall quality, enhance competitive advantage, development advantage and benefit advantage.

3.2.2 Planning and Organizing

(1) Gain Leaders' Support

This cement enterprise has adhered to the "three simultaneous" strategy of environmental protection and enterprise development to be simultaneously planned, simultaneously constructed and simultaneously operated since plant establishment. The enterprise has always attached great importance to the win-win of environmental benefit and economic benefit, especially the top-level leaders pay great attention to conducting cleaner production audit to the enterprise, and also invite cleaner production audit experts for training and inspection, to understand the details of production process, explore cleaner production opportunity and potential. It laid a good foundation for the implementation of cleaner production work.

(2) Establish Cleaner Production Audit Team

To ensure the smooth and organized conduct of audit work, set up a cleaner production audit team with enterprise plant director as team leader, enterprise chief engineer as deputy team leader. On the basis of taking experts' opinions and consulting institution's guidance, achieved a clear work division among team members.

(3) Formulate Audit Work Plan

In order to achieve a satisfactory result from the audit, the audit team formulate an audit work plan in accordance with manual requirements in combination with the audit working performance. See Table 18.

Phase	Work Content	Completion Time	Department	Results
1. Planning and	1.Carry out publicity and education, organize learning	2010.12- 2011.1		
Organizing	Acquire top leader		External audit	1.Acquire top
	support		institution	leader support

Table 18: Plan of Cleaner Production Implementation
	2. Form enterprise		Department	2. Form
	audit team		leaders	enterprise audit
	3. Make audit work			team, make audit
	Plan			work Plan
	1.Conduct status	2011.1	Department	
	survey; enterprise	2011.1-	heads	
	profile	2011.3		
	Production status,		Professio-	
	environmental		nals &	
2 Dro	protection status		technician	
2.Pie-	2. Analyze pollution		Audit team	
evaluation	generation cause,			
	draw conclusions			
	3.Determine audit			1.Determine
	focus			audit focus
	4.Propose cleaner			2.Implement
	production targets			no/low cost plan
	1.Determine		Department	
	material input,	2011.3-	heads	
	output and pollution	2011.4		
	emission status			
	2.Form material		Technical	1.Material and
	equilibrium diagram,		heads	water equilibrium
	water equilibrium			diagram
3.Evaluation	diagram			
	3. Analyze waste		Audit team	2. Waste
	generation cause			generation
				cause, analysis
				result
	4.Propose and			3. No/low cost
	implement no/low			plans
	cost plans			implementation
	1.Backup plan		Department	Cleaner
4.Plan			heads	production
Formulation	2.Plan classification	2011.4-	Professionals	scheme list
and	and screening	2011.6	&technician	
Screening	3.Interim report,		Audit team	
	no/low cost plan			
	1.Conduct	2011 6	Audit team	Implemented
	technology	2011.0-		plan feasibility
5.Feasibility	feasibility analysis	2011.7		
Analysis	2.Environmental,			Analysis report
	economic and			
	social benefit			

	evaluation			
	3.Recommend			
	enforceable plan			
	1.Organize the		Relevant	1. Implemented
6 Dian	implementation of	2011.7	technician	plans
0.Fidii	plan			
on	2.Assessment on		Audit team	2.Implemented
OII	the implemented			result
	plan results			
	1.Establish sound	2011 7-	Branch	Continuous
	cleaner production	2011.7-	leaders	cleaner
	organization	2011.0		production plan
7.Continuous	2. Establish sound		Audit team	
Cleaner	management			
Production	scheme			
	3.Form continuous			
	cleaner production			
	plan			
	1.Compile audit		Branch	Cleaner
9 Audit	report for expert		leaders	production audit
o.Auuli Roport	inspection	2011.8		report
Кероп	2.Complete audit		Audit team	
	repot			

(4) Publicity Education

In order to smoothly deploy cleaner production audit work, it is necessary to educate all the leaders and employees about the current environmental protection awareness and significance of conducting cleaner production work, through publicity education and relevant training. Furthermore, it is important to eliminate ideological obstacles and create a favorable public atmosphere. On 13th January 2011, the enterprise invited experts for cleaner production training and ideological mobilization. There were 37 participants including audit team members and other responsible persons. The content included social background of cleaner production, domestic and foreign status quo, the significance and relevant cases of enterprises deploying cleaner production. With the training, audit team members got a better understanding of cleaner production and realized the significance of deploying cleaner production on enterprise energy saving, consumption reducing, pollution reducing and efficiency enhancing. Predictions and analyzes concerning the possible obstacles that encounter during cleaner production audit work were also discussed and participants come up with according solutions. Moreover, the trainings provided basic knowledge, organizational, technical and material support. See Table 19 for cleaner production audit barriers and solutions.

No.	Barrier	Cause	Solution
	Idea barrier	Some employees	Use a variety of publicity channels,
		consider clean audit	promote the purpose, significance of
1		to be a few people's	cleaner production, and explain cleaner
1		work, themselves not	production potential benefits using the
		included.	results of cleaner production from
			domestic and foreign peer
	Organizati-	The ideological	Enhance training, establish the ideology
	on Barrier	conflict between	of cleaner production and pollution
2		current management	prevention, establish examination
		system and cleaner	scheme for performance assessment
		production	
	Production	Lack of basic data;	Collect sufficient information, enhance
2	barrier	lack of cleaner	research and test
5		production	
		technology	
	Econo-	Concerned about	Carry out audit work as soon as possible,
4	mic barrier	expense and no	and implement no/low cost plans to gain
		actual return	actual benefits.

Table 19: Barriers and Solutions of Cleaner Production Audit

With publicity education the education rate of all enterprise employees reached over 90%, most of them have a clear understanding of the concept of cleaner production and cleaner production audit content and measures within a short period of time. So as to achieve the goals of correct ideology, realize and do the best to reduce waste generation and energy consumption to the largest extent.

3.2.3 Pre-audit of Cleaner Production

(1) Enterprise Introduction

This cement enterprise is a limited liability company, its business scope includes: cement production and sales, wear-resistant material casting, new construction material sales and limestone mining. The company currently has 294 employees in total, including 21 technicians. Production-site staff has a three-shift system, management staff above group leader level has day-time shift system, and there are 310 working days annually. The enterprise was established in August 2004, by 2010 the gross annual output value is 1.5 billion yuan, annual profits and taxes is 69 million yuan.

This cement enterprise has $180,000m^2$ floor area. Currently, it has one new cement production facility, with an annual output of 1200t clinker and a $0*10^4$ t cement production capacity. The production line was officially put into operation in November 2004. Using the world's most advanced ABB company's AC800F and DCS (distributed control system). Inspection machine is at the advanced level in the cement industry. The main products are: P.O42.5R_P.O42.5_P.C32.5_P.C32.5R, etc.

cement varieties. It passed IS09001:2000 quality management system certification in 2002, its products have features such as high strength, high extra coefficient, low alkali content, intensive paste structure, high penetration resistance and frost resistance, good abrasive resistance and corrosion resistance, etc. The key markets are Yinchuan, northern Shaanxi, Bayannur, Alxa League and Erdos, etc. Extensively used in industrial and civil building, highway, bridge construction and airport, etc.

(2) Field Investigation

A Field investigation to the production site of the cement enterprise was organized. Seminars and consulting dialugues were conducted to further understand the current cleaner production status. Moreover, no/low cost plans were proposed and collected and the feasible ones were summarized, respectively. Lay the foundation of determining audit focus through field investigation.

1) Key Production Process Flow Chart

- 1200T/D clinker production line, limestone crushing and delivering--- limestone prehomogenization---raw material storage and allocation---raw material grinding and waste gas treatment---raw material homogenization and feeding--- clinker sintering---clinker cooling---clinker storage and delivering, clinker bulk coal crushing and prehomogenization--- coal dust preparation---clinker sintering.
- ② 500,000T/A cement production line, plaster crushing and delivering---cement batching---cement grinding---cement storage, bulk transportation, and detailed production process see Figure 2.

Figure 2: Clinker Production Process Flow Chart

Figure 3: Cement Grinding Technology Flow Chart

The raw materials consumed in the sintering process are limestone (lump), limestone chippings, coal ash, pyrite residue, copper residue, raw coal, middling coal and silicon waste rock. Raw materials consumed in the manufacturing process are cinder, plaster, silica powder, desulfurization plaster and limestone chippings. Raw material annual consumption and source see Table 20.

Workshop	Material	Consump -tion t/a	Indicator	Source
	Limestone	390,728.60	CaO≷49%	Otog banner Zhongkai Mining Development Co., Ltd.
Sintering Workshop	Coal ash	87,067.52	Al₂O₃≥30.0%	Erdos Inner Mongolia Electricity Co., Ltd.
	Pyrite resideu	9,265.28	Fe₂O₃≥45%, 55%、 75%	Qingtongxia Liyuan Trading Co., Ltd.
	Copper residue	10,697.16	Fe₂O₃≥55%	Bayannur Feishang Copper Industry Co., Ltd.
	Raw coal	50,967.10	Heat generation ≥ 4800Kcal/kg	Otog Banner Dongchen Coal Mining
	Middling coal	19,606.80	Heat generation≥ 4700Kcal/kg	Shenhua Coal Transportation and Marketing Company Wuhai Branch Company
	Silicon waste stone	33,983.74	SiO₂≥82%	Otog banner Zhixinggui Limestone
	Plaster	5,599.45	SO₃≥35%	Co., Ltd. Otog banner Mengxing Plaster Co., Ltd.
	Cinder	33,096.43	Loss on ignition≤5%	Individual household
Manufac- turing	Desulfuriz ation plaster	17,769.09	SO ₃ ≥40%	Erdos Inner Mongolia Electricity Co., Ltd.
ννοικοπορ	Silica powder	20,822.44	SiO₂≥65%	Erdos Xijin mining and metallurgy Co., Ltd.
	Limestone chippings	148,977.96	CaO≥47%	Individual household

Table 20: Supply and Consumption of Source Material (Year 2010)

2) Enterprise Electricity Utilization

Figure 4: Enterprise Electricity Consumption

3) Enterprise Heat Supply

This plant belongs to a central heating area, adopting the domestic advanced RB-SM-4T hot water boiler and setting the exit power at 240*10⁴kcal/hr, using low quality bituminous coal with daily consumption 6t/d and annual consumption 1080t. Indoor calculated temperature of heating design is implemented based on the *Cement Industry Labor Safety and Health Design Regulation*.

Figure 5: Pleat Heating Supply

4) Enterprise Water Usage

Drainage system including production circulating cooling water and subsidiary water consuming system, domestic water. The producing water usage are all circulating cooling water and domestic water, the total circulating water amount is $319.2m^3/d$, among which circulating water supplementary amount is $247.2 m^3/d$, domestic water usage is $47.04 m^3/d$, fresh water is $366.24 m^3/d$. For the annual water usage see Figure 6

Figure 6: Plant Water Supply/Discharge

(3) Main Pollutants and Treatment Measures

1) Waste Gas

Enterprise waste gas mainly comes from rotary kiln. Rotary kiln produces waste gas after the clinker firing process. The main waste gas generation parts are at kiln head and kiln tail. The main pollutants are dust, SO_2 , NOx, CO, etc.

Kiln head waste gas goes through kiln head static dust collection, then the falling dust arrived at storage yard through conveyor, waste gas discharges into the atmosphere through exhaust fan after reaching standards. Kiln tail waste gas cools down through kiln end humidifier tower, after static dust collection at the kiln tail the falling dust arrived at homogenization silo through conveyor, waste gas discharges into the atmosphere through tail exhaust fan after reaching standards. All of the production steps are reaching the cement industry enterprise pollutant emission standards under the monitoring of Erdos Environmental Protection Department.

No	Name	Air Capacity (Nm³/h)	Discharge Temperature (°C)	Dedusting Equipment	Entrance Concentration (g/ Nm³)	Qualified Concentration (g/ Nm³)	Emission (1⁄/a)
1	Limestone crushing	13390	Room tempera- ture	Bag dust collect0r	200	30	0.22
2	Ras material station Roof	5200- 7000	Room tempera- ture	Bag dust collector	100	30	0.66
3	Coal mill	40100	Room tempera- ture	Bag dust collector	100	50	2.3
4	Homogeni zation silo roof	8930	Room tempera- ture	Bag dust collector	20	30	0.44
5	Sintered kiln tail	30000	150	Electric dust collector	500	50	15.5 6
6	Clinker tower roof	6000	80	Bag dust collector	200	30	0.17
7	Clinker cooling	230000	250	Electric dust collector	200	50	20.2
8	Cement	158000	90	Bag dust	100	30	17.5

|--|

	mill			collector			
0	Cement	5200-	60	Bag dust	100	20	0.2
9	9 silo roof	7000	00	collector	100	30	0.2
	Bulk sile		Room	Bag dust			
10	Buik Silo	22500	tempera-	collector	100	30	0.2
1001	1001		ture				
	Dockoging		Room	Bag dust			
11	Packaging	26700	tempera-	collector	100	30	2.56
	workshop		ture				

2) Waste Water

The main source of waste water discharge: domestic water. Domestic water around 17169.6m³/a, production workshop washing water and circulating cooling water are all utilized, domestic sewage round 6132m³/a. Main pollutants are COD₅ BOD₅ SS, etc. Waste water treatment process of the plant: production waste water is recycled and not discharged externally, daily domestic sewage discharge amount is 16.8t/d, laboratory acid and alkali-contained sewage converges into septic tank after neutralization and dilution. Collected and treated every day by the Inner Mongolia Mengcheng city Economic Development Zone Management Committee Bureau for Environmental Health. Domestic sewage treatment schematic is shown in Figure 7.

Figure 7: Domestic Sewage Treatment Schematic

3) Solid Waste

Solid waste is not generally produced during the enterprise production process, but is mainly generated from household garbage. The total household garbage output accounts for 300kg/d. The environmental sanitation collects and processes all of them.

4) Noise

There is many noise generation equipment in this project, as the sound level is high. Noises mainly come from shredding, raw material grinding machine, coal grinding, air compressor and fan, etc. All noise sources have been taken relevant shielding measures to reduce noise impact on environment. Detailed measures see Table 22:

Process	Main Noise Source	Control Measures	
Raw Material Workshop	Limestone Crushing	Soundproof wall	
	Machine		
Paw Material Workshop	Raw Material Grinding	Soundproof wall siloncor	
Raw Material Workshop	Machine	Soundproof wail, silencer	
	Raw Material		
Furnace Workshop	Homogenization Roots	Silencer	
	Blower		
Furnace Workshop	Clinker Cooling, crushing	Soundproof wall, silencer	
	Raw Material Grinding	Soundproof door	
Furnace Workshop	Machine		
	Raw Material Grinding	Soundproof door	
Furnace Workshop	Machine	Sounaproot aoor	
Manufacturing Workshop	Cement Grinding Machine	Soundproof door	

Table 22: Generation and Treatment of Noise

(4) Determine Audit Focus

Through the investigation of whole plant's status quo, onsite inspection, pollution generation and emission analysis, to combine with practice. The clinker burning section and cement manufacturing section of enterprise cement production are the alternative audit focus, analyze and summarize on three aspects of production process main consumption, waste generation and environmental cost, that is the clinker burning and cement manufacturing are the alternative audit summary of key cases. After summarizing, determine the 6 factors influencing enterprise cleaner production, namely waste output, main consumption, environmental protection cost, waste toxicity, cleaner production potential and workshop initiative, as the basis of evaluation. Grading using the weighted ranking method that is the weighted ranking of clinker burning and cement manufacturing sections. Lastly determined, the audit focus of this round of cleaner production is clinker burning section.

			010	Short-ter End of 20	m Target	Long-t	erm Target 2013
No.	Project	Unit	Status 2	Indicator	Relative Quantity (%)	Indicator	Relative Quantity (%)
1	Heat material comprehensive energy consumption	kg/t	118	116.5	Decrea-s e 1.27	115.5	Decrea- se 0.8
2	Recycling water utilization	%	90%	95%	Increase 5%	97%	Increase 2%

Table 23: Goal of Cleaner Production of Enterprises

(5) Present and Implement No/Low Cost Plans

On the basis of extensively collected reasonable proposals, present and implement a number of simple no/low cost plans, which receive environmental benefit and economic benefit to some extent.

			Invest-	
No.	Name	Introduction	ment	Anticipated Benefit
			(10⁴yuan)	
	Reform the	Use ribbon heater to twine the		Reduce main engine
	air cylinder	dust collecting air cylinder		shut down time,
	of coal mill	from top to down, then		increase equipment
	dust	covered with quilt to prevent		efficient operation
F1	collector	air cylinder from freezing and	0.09	rate, decrease the
		malfunctioning		energy consumption
				caused by device
				malfunctioning shut
				down
	Reform the	Reform on the sever oil leak		No-cost investment,
	cement	of cement grinding mill main		after reform the main
	grinding mill	reduction gear, reseal using		reduction gear has a
	reduction	new seal gum, re-fix the		good leakproofness.
F2	gears of oil	cover-end bolt to achieve the	No cost	Calculated by
12	leak	desired effect		0.625kg leak/hour,
				annually saved
				machine oil
				3870.27kg, saved
				cost 57600yuan.
	Reform of	Move forward the top-hung		No-cost investment,
	new	bridge originally at the open		after reform
	packing	flashboard by 60mm, move		production increase
	machine	backward the red pipe		by 0.06t/hour,
	line	instrument controller originally		reduce electricity
		at the close flashboard by		consumption
		20mm. The purpose is to		
F3		open the flashboard in	No cost	
		advance when canning, and		
		postpone the closing, prolong		
		canning time, fulfill bag weight		
		requirement, decrease bag		
		per round, increase		
		production and reduce		
		electricity consumption		
F4	Install bulk	Install one air conveyor at the	2	Increase cement

Table 24: Summary of Plans of No Charges/Low Charges

	cement	bottom of cement bunker, one		bulk packaging rate,
	system on	steel cable tray, use cement		annually increase
	#2 and 3	bunker #2 and 3 for direct		30%
	cement	bulk packing, increase truck		
	bunker	loading rate		
	Replace the	The operation computers in		Enhance central
	operation	the central control room are		control room working
	computers	the lowest configuration		efficiency, reduce all
	in central	computers since plant		the energy
F5	control	establishment and have low	0.96	consumption due to
	room	speed, affecting normal		computer
		operation. Therefore replace		malfunctioning
		with computers with high		leading to main
		configuration		engine shut down
	Double use	All office papers are replaced		Office papers are
	office	with double-side papers		replaced with
	papers	excluding a few documents.		double-side papers,
		Improve office supplies		reduce office costs
F6		effective utilization	No cost	and enhance
				enterprise
				management and
				working
				performance
	Collect	Collect all the obsolete cotton		No-cost investment,
	obsolete	yarn used to wipe equipment		use in rotary kiln
F7	cotton yarn	in a designed bucket, reutilize	No cost	firing after recycling.
		for rotary kiln firing. Save cost		Annually save 160kg
		and reduce waste		and cost 1228yuan.
	Reform	Install the obsolete magnet		Use waste reforming
	deironing	roller at cement grinding enter		to improve operating
	roller	long belt, then driven to run		rate and output for
F8	installed to	by the belt and absorb waste	No cost	cement grinding
	new cement	iron contained in material.		main engine
	grinding mill	Good for cement grinding		equipment
	line	blocking the slot.		

3.2.4 Cleaner Production Evaluation

(1) Audit Focus Overview

1) Clinker Sintering Section

The raw material has four groups of burdening, namely limestone, silicon waste stone, copper residue and coal ash. Raw materials entering the plant arrived at corresponding storage by conveyor (in-plant limestone enters limestone prehomogenization yard after grinding, and then enters limestone storage), then after

bottom reservoir burdening, feed into raw material mill for grinding through belt conveyor, drying hot wind is provided by hot winder exits the preheater machine. Grinding qualified raw material are collected through electric dust collector carrying by wind, the collected raw material dust then enters raw material prehomogenization yard through conveyor for prehomogenize. The prehomogenized raw material then enters preheater machine for heat exchange decomposition through feeding and metering devices. Then, in-window calcination follows. Heat source for calcination and decomposition comes from coal burning. After homogenization and grinding, the in-plant raw coal arrives at head coal and tail coal pulverized coal bunkers, for raw material prehomogenization and sintering. After sintering, the clinker goes through the grate cooler for cooling down, and is then delivered to clinker storage yard or storaged through conveyor.

Figure 8: Clinker Sintering Section Technological Process

2) Function Description of Unit Operation

Sintering Section	Function Description
Raw material	After calculating grind the material through ball mill
grinding	
Raw material	Prehomogenization silo prehomogenize raw material with wind power,
prehomogenizing	so as the production zone burdening is stable
Coal dust production	Grind raw coal into coal dust, and fineness reaches rotary kiln clinker
	sintering requirement
Pro bostor	Put prehomogenized raw material through pre heater for
Pre-nealer	decomposition, decomposition rate reaches 90%
Rotary kiln	Decomposed raw material enters rotary kiln for sintering
Croto ocolor	Clinker enters grate cooler for cooling down then arrives at clinker
Grate COOIEI	storage yard through conveyor.

Table 25: Function Description of Unit Operations of Fired Station

(2) The Input and Output of Audit Key Materials

In order to conduct a more in-depth and detailed analysis of the reasoning of material balance and waste generation on the audit key materials at this phase, the audit team

makes full use of current testing equipment, and with the help of testing equipment and manpower from assistance units, under the condition of normal production, using on-site inspection for further testing the input and output material.

	Input		Output		
Input		Quantity (t/d)	Output	Quantity (t/d)	
	Limestone	2241.5			
Raw Material	Silicon Waste	156.2	Clinker	1244	
	Stone	150.2			
	Coal Dust	47	Ignition loss,		
	Coal Ash	62.4	homogenization	1490.6	
Coal	Row Cool	000 F	remaining raw material,	1409.0	
Grinding	Raw Coal	220.5	dust, CO ₂		
Total		2733.6		2733.6	

1) Clinker sintering section Material Balance

Table 26: Summary of Input/output Data of Clinker Station

2) Clinker Sintering Section Water Balance

Water Usa	ge(m ³ /d)	Drainage and Water Consumption (m ³ /d)		
Name	Quantity (d)	Name	Quantity (d)	
Water Supply	364.01	Production Device Water usage	247.2	
Device circulating	145.4	Device circulating	145.4	

Table	27.	Water	Balance	of	Clinker	Station
rabic	Z 1.	vvalor	Dalarice		Omition	olation

cooling water		cooling water	
		Unforeseen water	11 91
		usage	44.01
		Evaporation Loss	62.4
		Wind Loss	9.6

Figure 10: Clinker Sintering Section Water Balance

2) Clinker Sintering Section Hear Balance

Income	Heat		Expense Heat		
Item	KJ/Kg	%	Item	KJ/Kg	%
Fuel burning heat	4886.38	93.78	Clinker formation heat	2958.1	56.77
Fuel sensible heat	9.90	0.19	Clinker exiting cooling machine sensible heat	95.37	1.83
Raw material sensible heat	109.96	2.11	Pre-heater exhaust steam sensible heat	1222.11	23.45
Feed back dust kiln sensible heat	14.59	0.28	Cooling machine exhaust air sensible heat	384.06	7.37
Primary air sensible heat	8.86	0.17	System surface heat dissipation	335.1	6.43
Raw material brought into airsensible heat	1.56	0.03	Cooling water brings heat	153.74	2.95
System wind leakage sensible heat	21.89	0.42	Pre-heater flying ash sensible heat	63.06	1.21
Entering cooling	158.40	3.04			

Table 28:	Heat Balance	of C	linker	Station

machine air sensible			Total	11.54	00
heat					
Total	5211.54	100			

(3) Cleaner Production Potential Analysis

The sintering section is a typical cement clinker sintering unit operation, the technique is more mature. Cement industry is an important high energy-consuming industry in China, the total energy consumption is huge. Combining with the technology innovation needs of this year, it is finally determined that the main cleaner production potential of sintering section lies in energy consumption. Although the current technology level and consumption indicators are at middle level in this industry, but since they are put into use, with technical analysis and comparison it is shown that there are still possibilities to further reduce energy consumption in clinker sintering system. There is great potential for cleaner production. The analysis are:

- 1) When the rotary kiln was in preparation phase, the cement clinker dry production line was still at its initial development stage and there were some drawbacks in the selection of rotary kiln coal-injection duct. The designing met the requirements of rotary kiln clinker sintering, but it caused energy waste. After a demonstration by the enterprise energy group, low-quality coal was tried out. It was decided to adjust raw coal proportion, matching the original raw coal proportion with 1:1 low-quality coal. During the trial period the heating value of coal was within the required range of use, and since the ash contents of coal and SO2 were low, it is good for the normal operation of rotary kiln system. Less crusting of kiln-end smoke chamber and decomposing furnace occured, and moreover there was less shutdown due to process incidents, greatly reducing the labor intensity for employees. Meanwhile it saves energy, reduces energy consumption and clinker cost. Therefore it is quite necessary to innovate the technology of rotary kiln coal-injection duct in the sintering section.
- 2) Since plant construction, the circulating water branch pipeline in the sintering section uses regular steel pipes with diameter 50mm. The steel pipes are prone to oxidize and leak, therefore circulating effective water utilization is lower than 90%. In 2010, there was an incident for over 100 hours due to circulation water shut down, and it was difficult to repair which lead to increased energy cost such as electricity consumption.
- 3) Due to the large fluctuation in the raw material composition, the rotary window clinker sintering process is instable. Frequent kiln-ringing and kiln-knotting incidents are leading to blockage at crushing exit, which are difficult to manage, have a low safety coefficient and huge labor intensity for employees. In 2010, there was an incident for over 100 hours.
- 4) With the analysis above, finally it is determined to conduct energy saving modification to sintering section. Contributing to fulfill cleaner production goals of

energy saving, consumption reducing, pollution reducing and efficiency enhancing.

(4) The Formation and Selection of Plans

The working focus of this phase is to formulate a cleaner production plan based on previous audit results. The cleaner production audit group analyses the results based on material balance, water balance and pollutant generation. Starting with actual condition at the site, mobilize and encourage all staff to propose cleaner production plans or reasonable suggestions. Extensively learning from domestic and foreign industry advance technology and organizing experts for technical consulting, finally formulate a number of cleaner production plans.

1) Plan Summary

Cleaner production plan is jointly discussed and formulated by the audit team, enterprise employee and experts. Firstly, cleaner production audit team collects suggestions from all sections. The motivated front-line employees actively respond and propose many reasonable suggestions and clues for the plan based on their practical production experiences. Secondly, organizing relevant technicians and experts to inspect and analyze on the whole production technology and production process. Come up with a plan from 8 aspects: raw material and energy, technology process renovation, equipment maintenance and update, process optimized control, products update or improvement, waste recycling, enhancing management and improving staff quality. Then experts and enterprise employees have seminars, verify actual production scenario, inspire each other and resulting in an alternative plan. Summarize all the collected suggestions, and produce 8 no/low cost plans, 3 medium/high cost plans. Table 29 shows no/low cost plans and medium/high cost plans.

Type	No.	Name	Invest- ment estimate (10⁴yuan)	Economic Benefit	Environmental Benefit
Equipment	F9	Circulating water renovation and replace cooling tower	29	Circulating water utilization increases to 95%, annually increase main engine equipment operation rate by 1%. Calculated by 86% annual operation rate, it reduces loss of 1.8 million yuan.	Effectively reduce fresh water usage
	F10	Add a high pressure water gun at crushing	6	Annually increase main engine equipment operation rate by 1%. Calculated by 86% annual	After implementation it reduces equipment

Table 29: Summary of Cleaner Production Plans

	exit		operation rate, it reduces loss of 1.65 million yuan.	idling, saves rotary kiln firing used diesel, coal dust, etc.
F11	Replace coal injection duct at rotary kiln	21	Calculated by 70000t raw coal per year, it saves 1.4 million yuan.	After implementation effectively reduce energy consumption
F1	Renovate the air cylinder of goal mill dust-collect or	0.09	Enhance equipment operation rate and reduce energy loss	Reduce pollution
F2	Renovate the oil leaking of main reduction gear of new line cement grinding mill	no cost	No-cost investment. After renovation the main reduction gear has a good leakproofness, by 0.625kg/hour, it saves 57600yuan of oils per year	Save energy consumption
F3	Renovate the new line packaging machine	no cost	No-cost investment, after renovation production per machine increases 10.06t/h	Save energy consumption
F4	Install cement bulk packing system to #2 and 3 cement bunker	2	Increase bulk cement rate	Reduce energy consumption
F5	Replace central control room computers	0.96	Enhance working efficiency	
F6	Suggestion on using double size office paper	no cost	Replace office papers to double size, reduce office costs	Save resources
F7	Collect	no cost	No-cost investment,	

	waste cotton yarn		recycled cotton yarn are used for rotary kiln firing, annually recycles 160kg and saves 1280yuan.	
F8	Renovate deironing roller installed to new line cement grinding mill	no cost	Use wastes renovation to increase cement grinding mill output	Reduce energy consumption

2) Plan Selection

The enterprise leader, technicians, managers, internal and external experts consider from the aspects of technical feasibility, environmental feasibility, economical feasibility and enforceability, a simple screening method which is adopted for the no/low cost plans. The weighted ranking method is used for medium/high cost plans. Finally the audit team screened and selected 11 feasible plans from aspects of technical feasibility, environmental feasibility, economic benefit, ease of implementation and impacts on production and products. Of the selected plans, there are 8 no/low cost plans and 3 medium/high cost plans. The selection of feasible no/low cost plans and preliminary feasible medium/high cost plans are shown in Table 30.

Result	No.	Name	Note
	F1	Coal mill dust collector air cylinder	Sintering section
		Renovation on oil leaking of New	Cement
	F2	Line cement grinding mill main	manufacturing
		reduction gears	section
		Percyction on New Line packing	Cement
	F3	machine	manufacturing
			section
Faasibla	F4	Install compatibulk packing system	Cement
		to #2.2 compart bunker	manufacturing
no/iow cosi			section
pians	F5	Replace central control room computers	Central control room
	Fe	Suggestion of using double size	General affairs
	FO	paper in office	department
	F7	Collect waste cotton yarn	Sintering section
		Penavata dairaning rollar installed to	Cement
	F8	Renovate denoming foller installed to	manufacturing
			section

Table 30: Selection of Cleaner Production Plans

Preliminary	F9	Circulating water renovation and replace cooling tower	Sintering section
feasible medium/high	F10	Add a high pressure water gun at crushing exit	Sintering section
cost plans	F11	Replace coal-injection duct at rotary kiln	Sintering section

(5) Feasibility Analysis

1) Feasibility analysis on circulating water renovation and replacing cooling tower

①The necessity of project investment

When enterprise 1200t/d put into use clinker production line in August 2004, there were many drawbacks in the initial circulating water system design. Before the reform, the recharge well circulating pool had a length of around 500m, and 7.5kW deep-well pumps were used for water recharging., The water recharging pipes were regularly made of seamless steel which uses direct buried pipe. A part of the steel pipes was oxidized and water was leaking since plant establishment; Circulating water, flowing into all equipment also used regular steel pipes, and again they were partly oxidized with water leaking. The effective utilization of circulating water was less than 90%.

2 Energy-saving Reform Plan

Replace the original water recharging well with recharging well closer to circulating water pool of 200m, using PPR pipes with 75mm diameter, deep-well pump changes to 5.5kW power deep-well pump, saving pipe material around 300m. Replace the original cooling tower with new industrial circular counter flowing fiberglass cooling water tower.

③Technology Evaluation

First, after renovation it could effectively increase circulating water utilization and ensure the well-functioning of rotary kiln.

Second, replace all the circulating water pipes into fiberglass pipes, which is a one-time investment and has low maintenance cost.

Third, the replaced cooling tower is the general model in the industry, with mature technology.

4 Economic Evaluation

Comparing the situation before and after the circulating water establishment, since there are less shut down incidents, and circulating water temperature reduces to around 10° C, the well-functioning of the equipment is ensured.

The circulating water recharging well reduces power by 2kW compared to the initial state; the daily saving electricity cost are by 24yuan, and hence by 2*24*0.5*365=8760yuan for the total year. In total 8760yuan are saved on electricity.

As an effect, there is reduced water resource waste, reduced energy consumption and effectively and reasonably reduced clinker sintering cost. After reform, the effective utilization of circulating water reaches 95%, achieving the expected goals. For example: before reform, the actual circulating water usage accounted for $30.3m^3/h$ while after reform, the actual circulating water usage was $14.4m^3/h$. Indicating: circulating water usage is 280t/hr and the supplement with fresh water is $14.4m^3/h$. So, the effective utilization of circulating water can be calculated as followed: (280/280+14.4)*100%=95.1% with annual water savings of (30.3-14.4)*24*365=13.9*104m3 and total saving in water costs of 13.9*0.5 yuan=69500yuan.

Project	Formula	Result	Unit
Project investment I	/	10.8	10 ^₄ yuan
Annual operational	1	7 75	10 ⁴ vuon
cost-saving P	7	7.75	TU yuan
Equipment annual	1/5	2.16	10 ⁴ vuon
depreciation cost D	1/5	2.10	TU yuan
Annual incremental		E 00	10 ⁴
cash flow F	P-0.33 (P-D)	5.90	TO yuan
Pay Back Period N	I/F	1.9	Year
Net present value NPV	$\sum_{j=1}^{n} \frac{F}{(1+i)^{j}} - I$ (i=12%)	10.46	10 ⁴ yuan
Internal rate of return IRR	$i1 + \frac{NPV1 * (i2 - i1)}{NPV1 + NPV2 }$	46.6	%

5 Environmental Evaluation

During the implementation of plans, do not affect the normal functioning of equipment. Except for laying circulating water pipe and digging foundation, there is no adverse factor on environment.

6 Conclusion

The circulating water reform plan includes advanced technology which is safe, reliable, mature, beneficial for reducing the current water resource waste, improving circulating water utilization factor and also fulfills some economic benefits. There is enough room to install new equipment under current condition. From the technical perspective, it is a feasible plan.

After implementing the plan, the new circulating water pipe saves 381.6t of water per day, circulating water effective utilization reaches over 95%. Comply with the fundamental concepts of cleaner production energy saving, consumption reducing, pollution reducing and efficiency enhancing. From the environmental perspective it is a feasible plan.

According to the relevant economic indicators of this plan, it can recover the cost in about 2 years, and internal yield is far more than industry benchmark yield. From economic perspective it is a feasible plan.

In summary, Circulating water reform plan is a feasible plan. The implementation of this plan saves 730kW h electricity per year and water resource costs of 69500yuan

per year. Provide technical support for the enterprise to achieve energy saving and consumption reducing.

2) Feasibility analysis of adding high pressure water gun at crushing exit

1)The Necessity of Project Investment

Before reform the rotary window gets knotting due to frequent technology incident, which leads to a blocked and shut down grate cooler crushing exit , affecting the function of main engine. The blockage is difficult to handle and requires many manpower and material resources, and low safety coefficient. Each time the incident takes more than 12 hours to handle, during this time the grate cooler and fan are doing useless power, consuming huge electricity resource. In addition diesel (around 1000L) is being used during kiln which creates invisible waste. In 2010, main engine shut down takes 49.5hr due to grate cooler knotting, with a total direct loss of 386800yuan.

2 Energy-saving Reform Plan

Install the high pressure water gun type TJ02-S at the crushing exit of rotary kiln grate cooler, with an instantaneous pressure reacheing 50MPa at exit and a water consumption of 50L/min. It takes only 15min to handle everything when the crushing exit gets blocked again. Its working principle is the following: When spraying water contacts high temperature material using a high pressure water gun, the material and water instantaneously explode and smash the bulk material. In the normal treatment process, if the treatment time of grate cooler is within 30min, it does not influence the functioning of main engine and auxiliary engine. It only takes 2-3 people to handle it with high safety coefficient. Avoid the shutdown incident due to crushing exit blockage, increase the effective operation rate of main engine equipment.

③Technology Evaluation

First, the implemented plan can effectively reduce cleaning time for crushing exit blockage and increase the main engine function rate.

Second, the adopted high pressure water gun can be operated by one person and is easy to install and maintain.

4 Economic Evaluation

After finishing the reform in April, the blockage shut down incident of crushing exit is restrained effectively, the equipment operational costs are greatly reduced and the emission of dust is decreased. By calculating, the annual decrease of losses is 658500yuan:

Annual shut down time is 49.5hr, rotary kiln production 51.57t/h* annual operational rate 86%* clinker price 176.22yuan=386800yuan.

Project	Formula	Result	Unit
Project investment I	/	6.8	10 ⁴ yuan
Annual operational	1	29.69	10 ⁴ vuon
cost-saving P	7	30.00	TO yuan
Equipment annual	I/5	2.26	10⁴ yuan

depreciation cost D			
Annual incremental	P-0.33*(P-D)	26.66	10 ⁴ vuan
cash flow F			, , , , , , , , , , , , , , , , , , ,
Pay Back Period N	I/F	0.26	year
Net present value NPV	$\sum_{j=1}^{n} \frac{F}{(1+i)^{j}} - I$ (i=12%)	57.3	10 ⁴ yuan
Internal rate of return IRR	$i1 + \frac{NPV1 * (i2 - i1)}{NPV1 + NPV2 }$	>100%	%

5 Environmental Evaluation

During the project implementation process the functioning of equipment is not affected. In addition, it could reduce the environmental pollution caused by technology shut down and unorganized dust emission.

⁶Conclusion

The plan of adding a high pressure water gun at the crushing exit with advanced, safe, reliable and mature technology leads to effectively improved main engine equipment operation rates, reduced technology incident shut down, reduced clinker production cost and reduced economic loss. There is enough room to install new equipment under current condition. So, from the technical aspect this plan is feasible.

With the plan implemented, it reduces main engine equipment shut down, stabilizes the technical factor, effectively ensures the functioning of rotary kiln, contributes to an annual operation rate increased by 1%, and in total reduces financial loss of 386800yuan. The plan is in accordance with cleaner production fundamental concepts of energy saving, consumption reducing, pollution reducing and efficiency enhancing. So, from the environmental aspect ,the plan is feasible, as well.

According to the relevant economic indicators of this plan, it can recover the cost in about four months, and internal yield is far more than industry benchmark yield. From economic perspective it is a feasible plan.

In summary, the reform plan of adding a high pressure water gun at the crushing exit is a feasible one. With its implementation it could save losses of 186800yuan/a. It provides technology support for the enterprise to achieving the goals of energy saving and consumption reducing.

3) Feasibility Analysis of replacing rotary kiln coal-injection pipe.

1 The Necessity of Project Investment

For the rotary kiln coal-injection pipes that use raw coal type before reform, it requires a relatively high proportion of all ingredients in the raw coal, among which the coal ash content is within 31.33, sulfur-containing ingredient within 1.8, volatility within 21.55, and heat generation around 5200kcal, which goes beyond the design scope (normally

application range 4800-5000kcal). It imperceptibly increases clinker production cost and creating unnecessary energy waste.

2 Energy-saving Reform Plan

Replace to a new type of four-channel burner which has relatively low requirement on coal quality, generally requires coal-fired heat generation of 4700kcal. Therefore use low quality coal 1:1 to raw coal, effectively reduce clinker production cost and reduce energy waste.

③ Technical Evaluation

First, replace to a set of four-channel burner HP-II(B), finished product purchase and can be installed and applied directly afterwards;

Second, the technician can be replaced, operation is easier;

Third, after replacement effectively reduce raw coal usage amount.

④ Economic Evaluation

Before reform the 2010 annual usage amount is raw coal 702791t*350yuan/t= 24,597,600yuan; coal-injection duct usage amount after reform is: raw coal 47087 *350yuan=16,480,400yuan, middling coal 23192*300yuan=6,957,600yuan. In total it saves energy 1,159,600yuan/a.

Project	Formula	Result	Unit
Project investment I	/	21.3	10 ⁴ yuan
Annual operational	1	115.06	10 ⁴ vuon
cost-saving P	1	115.90	TO yuan
Equipment annual	1/5	10.65	10 ⁴ vuon
depreciation cost D	1/5	10.05	TO yuan
Annual incremental	D 0 33*(D D)	01.0	10 ⁴ vuon
cash flow F	F-0.33 (F-D)	01.2	TU yuan
Pay Back Period N	I/F	0.27	year
Net present value NPV	$\sum_{j=1}^{n} \frac{F}{(1+i)^{j}} - I$ (i=12%)	115.93	10 ⁴ yuan
Internal rate of return IRR	$i1 + \frac{NPV1 * (i2 - i1)}{NPV1 + NPV2 }$	>100%	%

5 Environmental Evaluation

During project implementation process it does not affect the normal functioning of equipment. Reducing energy operation cost, reducing energy waste and therefore reduce clinker production cost.

6 Conclusion

The plan of replacing the rotary kiln coal-injection pipe where the technology is advanced, safe, reliable and mature, effectively ensures the stability of rotary kiln technological parameter. Meanwhile, clinker energy consumption and production costs are reduced, and energy waste is minimized, as well. Under current condition, there is enough room to install new equipment. From technical aspect this plan is feasible.

After implementing the plan, it could stabilize rotary kiln technological parameter and reduce clinker production cost. Annually, a saving of raw coal worth 1,159,600yuan can be achieved. Comply with the fundamental concepts of cleaner production energy saving, consumption reducing, pollution reducing and efficiency enhancing. From the environmental perspective it is a feasible plan.

According to the relevant economic indicators of this plan, it can recover the cost in about 2.7 months, and internal yield is far more than industry benchmark yield. From economic perspective it is a feasible plan.

In summary, the reform plan of replacing rotary kiln coal-injection pipe is a feasible one. With its implementation it could save raw coal resource worth 1,159,600yuan; it provides technology support for the enterprise to achieving the goals of energy saving and consumption reducing.

4) Overall Evaluation

 $|_{11} > |_{9} > |_{10}$ $P_{11} > P_{10} > P_9$ $N_9 > N_{11} > N_{10}$ $D_{11} > P_{10} > P_9$

 $NPV_{11} > NPV_{10} > NPV_9$ $IRR_{11} > IRR_{10} > IRR_9$

		F10 Adding a	
Plan	F9 Circulating water	high pressure	F11 Replacing
Content	reform and replacing	water gun at	rotary kiln
Content	cooling tower	the crushing	coal-injection pipe
		exit	
	Effectively ensure the smooth	Enhance main	2.Stabilize smooth
	functioning of rotary kiln	engine equipment	operation of kiln
		operating rate	technology, reduce
			technical incident such
Technical			as ringing and knotting,
evaluation			crusting, etc.
result	Replace all circulating water	3.Energy saving	Effectively reduce
	pipes into fiberglass pipes,	and emission	clinker cost, reduce
	one-time investment and low	reducing,	resource waste
	maintenance cost	decrease	
		technical incident	
Environ-	Annually saving water		
mental	resource 13.9*104t,		
evaluation	electricity cost 8760 yuan.		
Economic			
evaluation			

Table 31: Comparison of Plans on Techniques, Environment and Economic Aspects

I(10 ⁴ yuan)	10.8	6.8	21.3
P(10 ⁴ yuan)	7.75	36.68	115.96
F(10 ⁴ yuan)	5.9	26.66	81.2
N(year)	1.9	0.26	0.27
VPV (10 ⁴ yuan)	10.46	57.3	115.93
IRR (%)	46.6	>100	>100

From the comparison of these 3 plans, in terms of environmental benefit: F9 could significantly reduce water resource usage, and the other two are slightly inadequate in quantitatively reducing environmental load; in terms of economic benefit, F10 and F11 have an obvious advance, Pay Back Period N, net present value NPV and internal rate of return IRR are all much higher than F9. Although F11 has a slightly higher investment, the reform to rotary kiln coal-injection pipe could fundamentally solve the problem of high energy consumption. Therefore, this investment is worthy; in terms of technical perspective, all three plans have mature technology. Overall, these three plans are in line with requirements in terms of technology, environmental benefit and economic benefit.

(7) The Plan Implementation

1) Plan Implementation Overview

Only by actually implementing cleaner production plans practical results can be generated, and all the previous works are preparation for plan implementation. The significant environmental and economic benefits resulted from implementing cleaner production plans and are motivation for enterprises to continuously carry out cleaner production. Therefore, implementing cleaner production plans is the most important process and phase of cleaner production, which requires active participation from all enterprise departments and collaboration of all employees. After the cleaner production plans are discussed and passed by the audit team, the break down and narrow down of all schemes should be started according to plan, actively pushing forward the implementation. Until July 2011, all the 8 no/low cost plans were implemented, all 3 medium/high cost plans are implemented as well, achieved satisfactory environmental and economic benefits.

	Table 52. Implementation and Outcomes of No/Low Cost Flans				
No.	Name	Investment Estimation (10 ⁴ yuan)	Economic Benefit	Environmental Benefit	
F1	Coal mill dust collector air	0.09	Main engines shut down due to coal	Reduce the unorganized dust	

2) No/low Cost Plans Implementation and Outcome Overview

Table 32: Implementation and Outcomes of No/Low Cost Plans

	cylinder		mill dust collector air cylinder freezing, annually increase main engine operation rate 1%	emission after shut down incident and energy consumption
F2	Renovation on oil leaking of New Line cement grinding mill main reduction gears	no cost	Annually save oil production cost 5.76*10 ⁴ yuan	Reduce energy loss
F3	Renovation on New Line packing machine	no cost	Unit production increases 10.06t/h	Energy saving
F4	Install cement bulk packing system to #2,3 cement bunker	2	Cement production bulk packaging rate 30%	Reduce cement production cost and energy consumption
F5	Replace central control room computers	0.96	After replacing operation computers there are no incidents and shut down incident.	Reduce equipment shut down incident and energy consumption
F6	Suggestion of using double size paper in office	no cost	Replacing office papers into double sided, reduce office cost	Reduce pollution and waste
F7	Collect waste cotton yarn	no cost	Annual recycleing 160kg, annual saving cost 1280 yuan	Reduce environment pollution
F8	Renovate deironing roller installed to new line cement grinding mill	no cost	Enhance cement grinding mill output and main engine operation rate	Reduce energy consumption

3) Medium/high Cost Plans Implementation and Outcome Overview

Table 33: Implementation and Outcomes of Medium/High Cost Plans

No.	Name	Investment	Economic benefit	Environmental benefit
F9	Circulating water	10.8	Circulating water	Reduce water resource

	renovation and		effective utilization	waste, reduce energy
	replace cooling		reaches 95%, Annually	consumption, annually
	tower		increases main engine	saves electricity cost
			equipment operation	8760yuan, saves water
			rate by 1%, annually	cost 6.95*10 ⁴ yuan
			saves water 13.9*10 ⁴ t	
	Add a high		Annually increase	Have some effect on
	pressure water		main engine	controlling dust
F10	gun at crushing	6.8	equipment operation	unorganized emission
	exit		rate by 1%, reduces	
			loss 36.68*10⁴yuan	
	Replace		Effectively control	Have some effect on
	coal-injection duct		clinker production cost,	reducing pollutant
F 44	at rotary kiln	24.2	annually saves raw	emission
FII		21.3	coal 3300t, saves	
			energy cost	
			115.96*10 ⁴ yuan	

Scoring of Cement Enterprises Cleaner Production Evaluation Index

The scoring of Enterprises Cleaner Production Quantitive Evaluation Index, formula is:

$P_i = S_{ij} K_i / 100$

In which

 $\boldsymbol{\mathsf{P}}_i$ -Score of the i^{th} secondary evaluation index

 \mathbf{K}_{i} -Final weighted value of the ith secondary evaluation index

 S_{ij} -The score corresponding to different level in the ith secondary evaluation index (j corresponds to level A\B\C)

Level A index corresponds to score S_{iA} =100; Level B index corresponds to score $80 \le S_{iB}$ <100; Level C index corresponds to score $60 \le S_{iB}$ <80 Corresponding level B forward index: S_{iB} =80+20(X_i-X_{min(i)})/(X_{max(i)}-X_{min(i)}) Corresponding level C forward index: S_{iC} =80+20(X_i-X_{min(i)})/(X_{max(i)}-X_{min(i)}) Corresponding level B reverse index: S_{iB} =80+20(X_{max(i)}-X_i)/(X_{max(i)}-X_{min(i)}) Corresponding level C reverse index: S_{iE} =80+20(X_{max(i)}-X_i)/(X_{max(i)}-X_{min(i)})

In the formula: Xi is the actual value of the i^{th} evaluation index $X_{max(i)}$ is the maximum of the i^{th} index; $X_{min(i)}$ is the minimum of the i^{th} index

The scoring of Enterprises Cleaner Production Qualitative Evaluation Index, formula is:

 $P_i = S_{ij} K_i / 100$

In which:

 $\boldsymbol{\mathsf{P}}_i\text{--}\mathsf{Score}$ of the i^{th} secondary evaluation index

 \mathbf{K}_{i} — Final weighted value of the i^{th} secondary evaluation index

 ${f S}_{ij}$ -The score corresponding to different level in the ith secondary evaluation index (j corresponds to level A\B\C)

For the qualitative evaluation indexes that don't distinct amount level A,B and C, the index has no value if not qualified for evaluation equipment, that is $S_{iA}=0$. Maximum score is 100 if qualified for evaluation requirement, that is $S_{iA}=100$

When qualitative indexes have level A,B and C, level A index corresponds to score S_{iA} =100; Level B index corresponds to score $80 \le S_{iB}$ <100; Level C index corresponds to score $60 \le S_{iB}$ <80. Failing to reach level C has a value of 0 for that evaluation index. Scores corresponding to level B and C in the secondary index are graded by experts.

The calculation formula for comprehensive evaluation index:

$$\mathbf{P} = \sum_{i=1}^{n} Pi$$

In which:

P- Comprehensive evaluation index of the enterprise cleaner production, generally between 0-100.

 $\ensuremath{\text{Pi-}}$ evaluation score of the i^{th} secondary index.

n- Number of secondary indexes participated in the evaluation, n=40

Index	Unit	Before Audit	After Audit
Cement kiln PM emission limit	mg/m ³	37.6	30.4
Crusher PM emission limit	mg/m ³	27.6	24.6
Crusher PM emission limit	mg/m ³	23.2	20.2
Cement kiln SO ₂ emission limit	mg/m ³	85	80
Cement kiln NOx emission limit	mg/m ³	371	359
Cement kiln fluoride emission limit	mg/m ³	0.395	0.376
Cement clinker heat consumption	kg standard coal/t clinker	127	125
Cement comprehensive electricity consumption	kWh/t cement	103	101
Low-quality coal usage	%	0	50
Industrial waste used in the ingredient	%	30	34

Table 34: Index C	omparison	before/after	Audit
-------------------	-----------	--------------	-------

Recycled water utilization	%	90	95

		Evaluation Index Preference				After
j.	Secondary Index	Value		Audit Pi	Audit Pi	
		A	В	C		
1	Quarry dust removal requirement: implement water spraying dedusting to open cast mining, spray water to mass pile, mining work site, transportation road and other dust source. Barren stone treatment: mine ouerburden material, barren stone, surface soil and tailings, etc. must use waste-rock yard	100%	> 50%- < 100 %	30%-50%	0.6890	0.6890
2	Harmless piling and use comprehensive utilization measures (e.g. greening), not allow to dump into other channels beside rivers, lakes, reservoir and waste rock yard	100%	>70%- <100%	50%-70%	1.1642	1.1642
3	Mine waste water treatment	Reference to quantitative required secondary index		1.1642	1.1642	
4	Mine crushing PM emission limit, mg/m ³	<20	20-30	>30-50	2.0451	2.4051
5	Cement PM emission limit value mg/m ³	<30	30-40	>40-80	4.1568	4.8627
6	Crusher PM emission limit, mg/m ³	<20	20-30	>30-50	1.7342	1.857
7	Crusher PM emission limit, mg/m ³	<20	20-30	>30-50	1.0897	1.1595
8	Cement kiln SO ₂ emission limit, mg/m ³	<200	200-300	> 300-400	4.9020	4.9020
9	Cement kiln NOx emission limit, mg/m ³	<400	400-600	> 600-800	1.1642	1.1642
10	Cement kiln fluoride emission limit, mg/m ³	<3	3-5	>5-10	0.6890	0.6890

Table 35: Score before/after Cleaner Production Audit

11	Dust unorganized emission, mg/m ³	<0.8	0.8-0.9	>0.9-1.0	2.0451	2.0451
12	Production line material dust prevention	Reference to quantitative required secondary index			3.3581	3.3581
13	Exhaust funnel minimum allowed limit	Reference to quantitative required secondary index			0.6890	0.6890
14	Boiler emission limit and chimney height	Reference secondary	to quantitat index	tive required	0.6890	0.6890
15	Water pollutant emission (in-plant)	Reference secondary	to quantitat index	tive required	3.3581	3.3581
16	Oil-contained waste water emission	Reference secondary	to quantitat index	tive required	2.0451	2.0451
17	Laboratory waste liquid treatment	Reference secondary	to quantitat index	tive required	1.1642	1.1642
18	Plant noise limit, dB	<45	45~55	>55~60	2.0451	2.0451
19	High-intensity noise source index	Reference secondary	to quantitat index	tive required	2.0451	2.0451
20	General waste residue treatment	Reference secondary	Reference to quantitative required secondary index			1.1642
21	In-plant sewage sludge treatment	Reference to quantitative required secondary index			0.6890	0.6890
22	Fire proof material qualification requirement	Reference to quantitative required secondary index			0.6890	0.6890
23	Hazardous waste sintering control index	Reference to quantitative required secondary index			2.0451	2.0451
24	Household garbage sintering control index	Reference to quantitative required secondary index			2.0451	2.0451
25	Cement clinker heat consumption, kg standard coal/t clinker	<106	106- 114	> 114-121	0	0
26	Cement comprehensive electricity consumption, kW•h/t cement	<98	98-105	> 105-115	8.732	10.384
27	Kiln system exhaust heat utilization, %	<80	50-80	30~<50	0	0
28	Adopted <48%CaO limestone, %	>10	5-10	<5	3.9552	3.9552
29	Using salic to replace raw material, %	>50	30-50	<30	0.7762	0.7762
30	Use low-quality coal, %	>30	20-30	<20	0	1.2938
31	(1)Burning substitution rate of using flammable wastes, %	>25	10-25	<10	0.7762	0.7762

	2) Wastes as cement					
	mixture material,%	> 40 70	> 00.40	> 00 00		
	Slag cement	>40-70	>30-40	≥20-30		
32	Pozzolan cement	>40-50	>30-40	≥20-30	1.2938	1.2938
	Flyash cement	>30-40	>25-30	≥20-25		
33	Industrial wastes in ingredient, %	>15	10-15	<10	0.7214	0.7214
34	Fresh water usage, t/t clinker	<0.3	0.3-0.6	>0.6-1	2.4273	2.4273
35	Recycled water utilization, %	>95	85-95	65-<85	1.2938	1.2938
36	Ex-plant cement bulk rate, %	>60	40-60	30-<40	2.4273	2.4273
37	Cement and clinker quality	Reference to quantitative required secondary index			7.1475	7.1475
38	Cement radioactivity	Reference to quantitative required secondary index			2.3825	2.3825
39	Cleaner production management	Reference to quantitative required secondary index			3.6080	3.6080
40	Use automatic control and monitoring system	Pollutant emission achieves automatic control and monitoring			0.9020	0.9020
Ρ	$\mathbf{P} = \sum_{i=1}^{n} Pi$				78.9	82.7

According to the Cement Industry Cleaner Production Evaluation Index (trial), issued by national Development and Reform Commission, cleaner production comprehensive evaluation index increases from pre-audit 78.9 to post-audit 82.7. Hence, the cleaner production level has increased.

To analyze the before and after audit environmental performance using single evaluation index, cement clinker heat consumption has been improved after audit. It reduces from pre-audit 127standard coal kg/t product to 125 standard coal kg/t product. But it is still below the third level of the industry; Kiln system waste gas/heat utilization is 0 before and after audit, meaning that no measures have been taken to utilize kiln system waste gas/heat. This indicates that for the next round of cleaner production audit, the focus should be reducing energy consumption and kiln system waste gas/heat. For the other resource indexes, low-quality coal usage and recycled water utilization are greatly improved. For pollutant emission indexes, the improved ones are dust emission and unorganized emission.

(8) Continuous Cleaner Production

1) Improve cleaner production organization

Cleaner production is a process continuously improving enterprise management, enhancing technology process, reducing cost, improving product quality and reducing environmental pollution. Therefore, it requires a cleaner production office to take charge of organizing and coordinating all departments. This office is directly managed by enterprise manager, specifically responsible for the following works: Organizing coordination and monitoring the implementation of cleaner production plans raised by this audit;

First, generate a cleaner production training plan: frequently educate employees on cleaner production; Second, be responsible for daily management job of cleaner production and formulate new cleaner production audit plans. Cleaner production office needs 2-3 full-time (or part-time) management staff, who need the following skills: familiar with cleaner production audit knowledge, acquainted with enterprise environmental protection performance, familiar with enterprise production and technology condition, good coordination ability and strong work responsibility.

2) Improve cleaner production reward system

Formulate cleaner production audit method, incorporate cleaner production departments and employees' bonus, salary composition, promotion and demotion, in order to trigger the enthusiasm of all employees to participate in cleaner production.

3) Ensure a Stable Cleaner Production Financial Source

Actively and Initiatively strive for all kinds of cleaner production financial source, such as taking full advantage of national cleaner production promoting polices to get bank loan, cleaner production subsidiaries, interest subsidy, etc. external funding. Meanwhile it is suggested for enterprise finance to set up a separate bookkeeping for cleaner production investments and benefits, ensure that the benefits generated from implementing cleaner production are fully or partly used in cleaner production audit, continuously advance cleaer production.

3.3 Case analysis of Ceramics Cleaner Production industry

3.3.1 Planning and Organizing

In May 2011, a ceramics enterprise established a cleaner production audit leading team and cleaner production audit working team on the basis of its original management organizing structure and system and under the guidance of Hunan cleaner production audit center experts. Established working plan for this cleaner production audit, proceed strictly according to cleaner production steps until completion in mid-August 2011. According to the production performance of this ceramics enterprise, organizational structure and surroundings environmental impact, the range of this cleaner production audit is: daily-used stoneware, packaging bottle (wine bottle), and special porcelain production line.

On 16th March 2011, the enterprise cleaner production knowledge publicity and education seminar is held, enabling the employees to better understand cleaner production, its significance as a new concept for the enterprise, in social and environmental terms. So that top down enterprise can understanding the importance of cleaner production audit, and also lay a good foundation for implementing cleaner

production audit in the next phase. On this basis the audit working team carries out the pre-audit work in the second phase.

3.3.2 Pre-audit of Cleaner Production

(1) Enterprise Basic Information

1) Enterprise Overview

The ceramics enterprise is a private-run technology oriented enterprise that integrates production, research, development and trade. Founded in July 2000, the enterprise is located in Zhuzhou Liling city, Hunan province. The enterprise has one province level technology center, one high-tech ceramics branch company, one brand factory specializes in high-end ceramics wine bottle manufacturing, two export stoneware branch factories, one fine porcelain branch company. In 2009 the brand "Taixin" daily ceramics was rated as the "International Famous Brand" of Hunan province by Hunan Department of Commerce. The main products are: daily stoneware, packaging bottle (wine bottle), and special ceramics. In 2010 the production output is 14744t of ceramics. Until the end of 2010 the enterprise has total assets 97,640,000yuan and 1400 employees.

2) Products and production process

The main products are: daily stoneware, packaging bottle (wine bottle) and special ceramics.

Production process of daily stoneware and packaging bottle (wine bottle) is briefly summarized as: base and glaze raw material enters the plant and after some time of storage and homogenization, ingredients are weighted the based on a production formula, then they are fine grinded by ball-milling until they are reaching the required fineness, deironing and screening. Then based on a different molding method, roller forming and mud are used to press filter dewater, then a multiple vacuum pugmill is put in reserve; for slip forming, mud is used for vacuum treatment, and after becoming finished mud, it is put in reserve. Molding process mainly uses roller forming and slip forming, then dry out, fettling, glazing and then reserving. Meanwhile, the sintering process uses natural gas sintering for the modern colored glaze stoneware, inspecting the stoneware exiting kiln and collecting the qualified colored stoneware. Applique and gold inlay to the qualified stoneware that needs color decoration, to the decorating firing kiln for sintering, inspection, and storage.

All processes are:

- ① Base glaze material manufacture: use kaolin, quartz and feldspar, etc. as raw material, use dry mixing, large ball mill and wet ball grinding, double screening to deironing. Plastic forming blank filter pressing, primary smelting and double refining. Grout material uses vacuum defoamation treatment. Glaze material uses dry mixing, wet ball grinding, double screening to deironing.
- 2 Molding: plate, glass, bowl and tray products, use plastic rolling forming; special-shaped products like wine bottle use slip forming, in which hollow

products use centrifugal casting, special-shaped large products like fish plate use high-pressure grouting.

- ③ Glazing: plate, glass, bowl and tray products mainly use manual glazing.
- ④ Sintering: For large piece products, use single sintering technique. To increase product quality and qualification rate, some vessel shaped complicated and ductile products use double sintering. Use pure natural gas for sintering.
- (5) Inspection: inspect the sintered ceramics and pick out the unqualified products, and classify qualified ceramics.
- 6 Packaging: load the qualified ceramics according to order requirement.

The main production process for special ceramics is: the out-purchased ingredient mud goes through pugmill, chipping, molding, drying, sintering, inspection and packaging steps. The ceramics enterprise will generate some waste water, waste gas, noises and solid wastes during production process. Daily stoneware, packaging ceramics (wine bottle), special ceramics production process and product location is shown in Figure 11 and Figure 12.

Figure 11: Daily Stoneware and Packaging Ceramics Production Process and Pollution Emission Point

Ingredient mud pugmill→chipping→molding→semi-finished checkisintering→inspection→				
packaging				
• \blacktriangle ckaging \rightarrow inspect				
▲Waste gas generation point ●solid waste generation point				

Figure 12:Special Ceramics Production Process and Pollution Emission Point

3) Major equipment and facilities

The ceramics enterprise production line has the following major production equipment in Table 36.

Branch factory #1 major equipment					
No.	Name	Model and Specification	Quantity	Operation Performance	
1	Ball mill	3T、5T、15T	6	Roller belt is scaling, uneven belt, vibrating	
2	Ball mill	0.5T、0.3T、0.15T、1T	15	Roller belt is scaling, uneven belt, vibrating	
3	Plunger pump	TCB140 250	2	Normal operation	
4	Double cylinder slip pump	TCBQ125 180	3	Normal operation	
5	Stirrer	300、400、630	10	Normal operation	
6	Circular vibrating screen	TZS-80	3	Screening net is pierced, need repair	
7	Pugmill	TCN23-33A	2	Normal operation	
8	Vacuum pump	W3	2	Engine oil leaking	
9	Hydraulic pressure filter	TCIF-750 60B	3	Normal operation	
10	Chain dryer	TCG200-300	12	Normal operation	
11	Roller mill	TC200 120 (175D)	7	Normal operation	
12	Plastic mill	TC2Y-30A	6	Normal operation	
13	Single template jigger	204	9	Normal operation	
14	Glazing machine	204	35	Normal operation	
15	Air compressor		7	Normal operation	
16	Draught fan	Y4-73-1044WW	1	Normal operation	
17	Chain Lifting		1	Normal operation	

Table 36: Overview of Major Equipment Audit
	machine			
10	Air heating		1	Normal operation
10	furnace		I	
19	Generating set	6160-Z 250kW	1	Normal operation
	Glazing Iron			Normal operation
20	absorption		4	
	machine			
21	Circular	TCC200-300	1	Screening net is pierced, need repair
21	vibrating sieve	100200-300	1	
22	Fine base	B665	18	Normal operation
	machine		10	
23	Mechanical filt		1	Normal operation
20	er press		1	
	Double-cylinde			Normal operation
24	rmembrane filt	40B	1	
27	er	400		
	press			
25	Roller kiln	80m	1	Equipment ageing, low heat
20				utilization, need renovation
26	Refining	61707	1	Normal operation
	machine			
27	Afterheat	45k\\/	1	Normal operation
	draught			
28	Vibrating	800*600	1	Normal operation
	screen		·	
29	Drawer kiln	6M3	1	Equipment ageing, low heat
				utilization, need renovation
30	Drying room		12	Normal operation
31	Jigger		288	Normal operation
32	Tipper		55	Normal operation
		Branch factory #1	major e	quipment

No	Name	Model and Specification	Quantity	Operation Performance
1	Ball mill	3T	8	Feed belt is broken, need repair
2	Plunger pump	TCB140 250	2	Normal operation
3	Double cylinder slip pump	TCBQ125 180	1	Normal operation
4	Stirrer	630	2	Normal operation
5	Pulp stirrer	TCJJ2600	2	Normal operation
6	Circular vibrating	TZS-80	3	Screening net is pierced, need repair

	screen			
7	Pugmill	TCIL-250	2	Normal operation
8	Vacuum pump	2X-4	3	Normal operation
	Vacuum slurry			
9	preparing		2	Normal operation
	system			
	Semi-automati			
10	c vacuum		1	Normal operation
	slurry			
	preparing line			
11	Roller mill	TC200 120(175D)	3	Normal operation
12	Plastic mill	TC2Y-30A	3	Normal operation
13	Glazing	204	12	Normal operation
	machine			······
14	Air compressor		1	Motor damaged, need replace
15	Refining machine	B665	4	Normal operation
16	Edging machine	204	1	Normal operation
17	Roller kiln	40m、60m	2	Normal operation
18	Small generator	TEGP1	2	Normal operation
19	Drying room		2	Normal operation
20	Hydraulic Fork Lift		226	Normal operation
21	Jigger		12	Normal operation
22	Tipper		300	Normal operation
		Special Ceramics Pla	nt Majo	r Equipment
No	Name	Model and Specification	Quantity	Operation Performance
1	Vacuum Pugmill	250	1	Normal operation
2	Vacuum Pugmill	120	1	Normal operation
3	Vacuum pump	H-25	1	Normal operation
	Small Pressing			Normal operation
4	machine		1	
5	Dimpling machine		1	Normal operation
6	Magnet ring machine	Φ25、Φ38、Φ50	3	Normal operation
7	Template	Ф1000	1	Normal operation

	jigger			
8	30 lathe	CWW6163	1	Normal operation
0	Bench drilling	SI 12	1	Normal operation
9	machine	01-10	I	
10	Cutting	1202 400	1	Normal operation
10	machine	3363-400		
11	Liquefied gas	SC 02 03 04 05	2	Normal operation
11	drawer kiln	30-02, 03, 04, 05	3	

From the equipment inspection, enterprise production equipment has the following features:

- According to Catalogue for Guiding Industry Restructuring (2011 Version) (National Development and Reform Commission No.9 Order, 2011), Catalogue of Eliminated Obsolete Production Capacity, Technique and Products, High Energy Consumption Machinery and Electrical Equipment (Product) Elimination Catalogue (First Group), the major production equipment and energy reform equipment are not included in the elimination list; the enterprise has maintained, updated and reformed the equipment during development process, gradually eliminate high energy consumption, production obsolete equipment.
- ⁽²⁾ The enterprise notices with the inspection that equipment has the following cleaner production potential: a. branch plant #1 ball mill roller belt is scaling, uneven belt creates vibrating, should be cleaned and descaled in time; b. branch plant #1 circulating vibrating screening net is pierced, need repair; c. branch plant #1 roller kiln and drawer kiln equipment is ageing, low heat utilization, need renovation d. branch plant #2 ball mill feed belt is broken, need repair; e. branch plant #2 circulating vibrating screening net is pierced, need repair; f. branch plant #2 air compressor motor damaged, need replacement.

4) Raw and auxiliary materials, energy consumption and production analysis

The raw materials for making ceramic base are mud, grit, Limestone including clay and quartz; Chemicals including feldspar, stone, aluminium oxide, kaolin, calcite, zinc oxide, etc. for glaze processing; plaster mainly used for making molds. In the recent 3 years the enterprise uses the following raw and auxiliary materials as in Table 37:

			Years			
	2008		2009		2010	
Category	Usage	T ceramics consump -tion	Usage	T ceramics consump -tion	Usage	T ceramics consump -tion
	t	t/t	t	t/t	t	t/t

Table 37: Overview of Consumption of Raw and Auxiliary Materials in Last 3

Pug	18513	1.563	19006	1.527	21941	1.488
Ceramic	1156.84	0.008	1096 276	0.097	1207 756	0.082
glaze	8	0.098	1000.270	0.007	1207.750	0.002
Plaster	1733	0.147	1168	0.093	1341.7	0.091

Note: pug consumption is calculated as wet weight with 23% moisture content, excludes wastes recycled from production workshop.

The enterprise reinforces management on raw and auxiliary material transportation, storage and utilization; reinforces employee management on job skills and responsibility, so that the product qualification rate increases from 64% in 2008 to 67.2% in 2010. It can be seen from Table 37 that the raw and auxiliary material consumption is showing a downtrend in the past 3 years.

① Produce output

Production output, output value and transformation is shown in Table 38 and 39:

Product	Unit	2008	2009	2010
Daily	10 ⁴	2585	1871	2105
stoneware	10	2000	1071	2195
Packaging				
bottle (wine	10 ⁴	10	29	102
bottle)				
Special	m ³	700	012	744
ceramics	(II)	103	913	744

Table 38: Overview of Production in Last 3 Years

Table 39: Overview of Output Value in Last 3 Years

Name	Unit	2008	2009	2010
Industrial	10 ⁴	0001 /	0300 3	15026
output value	10	9091.4	9399.3	15020

It can be seen from Table 38 and 39 that in addition to continuously produced daily stoneware, the enterprise also adds new economic growth projects-such as high-end wine bottle production. The enterprise therefore shows an upstream in the last 3 years.

2 Water Resource Consumption Analysis

This ceramics enterprise water usage includes tap water and circulating water, circulating water is waste water used by production process and then being treated and recycled back to production. Tap water is pumped from the district and then put into a clean water reservoir build by the enterprise, and enterprise usage does not have a water meter for metering. With on-site investigation the cleaner production audit team discovers that the enterprise has two deep well water pumps, each has a water flow of 20m³/h. The water pump operates 9h per day and fresh water usage is:

 $20*2*9=360m^{3}/d$. Annual working days are 350 and annual fresh water usage is: $360*350=126000m^{3}/a$.

Enterprise ton ceramics new water consumption (t/t ceramics) is the fresh water consumption for producing 1t of qualified ceramics, it calculates as:

Enterprise ton ceramics new water consumption (t/t ceramics) = enterprise annual fresh water usage (t)/annual output of qualified ceramics (t)

This enterprise has 8.55t/t ceramics of ton ceramics new water consumption in 2010, lower than ceramics cleaner production standard of 22t/t ceramics.

According to investigation, currently the enterprise only recycles part of water and the majority of waste water is discharged after treatment. Recycled water is mainly used for ball mill process, recycling rate is 58.1%, failing to achieve the ceramics cleaner production standard of \geq 70%.

4) Major energy consumption analysis

The ceramics enterprise has the following energy consumption and unit product consumption in the past 3 years:

	2008		2009		2010	
Category	Usage	Standard coal	Usage	Standard coal	Usage	Standard coal
Natural gas /m ³	2836691	3602597.5 7	2611587	3316715.4 9	2749668	3492078.3 6
Electricity /kW·h	2350032	822511.2	2202875	771006.25	2978760	1042566
Total standard coal /kgce	—	442510.77	—	408772 1.74		4534644.3 6
Unit consumption /(kgce/t)		373.48		328.36		307.55

Table 40: Overview of Energy Consumption in Last 3 Years

Note: natural gas average Lower heating value is 3893kJ/m3, standard coal coefficient is 1.214kgce/m3, electricity average Lower heating value is 3600kJ/ (kW·h).

According to requirements of Evaluation Index System of Ceramics Cleaner Production Industry (for trial implementation), when evaluating energy consumption index of ceramics industry, comprehensive energy consumption (kgce/t ceramics) refers to the sum of all energy converses into kg of standard coal, to produce 1t of qualified ceramics (coal, coal gas, electricity, Liquefied gas and compressed air, etc.). In 2010, comprehensive energy consumption is 307.55kgce/t ceramics, lower than cleaner production evaluation index of 1240kgce/t, achieves cleaner production requirement.

(2) Pollution Generation Analysis

1) Waste Water Generation Source

Enterprise waste consuming points are: a. glaze making ball mill ingredients and equipment/floor cleaning; b. molding workshop plaster and equipment/floor cleaning; c. mudding workshop ball mill ingredients and equipment/floor cleaning; d. forming workshop waste washing water, external washing water, tool washing and floor cleaning; e. canteen, office space domestic water.

2) Industrial waste water

Waste water mostly comes from domestic industrial consumption; Industrial waste water can be categorized based on production source: mudding workshop waste water, glaze making workshop waste water, forming workshop waste water, etc. see Table 41.

Workshop	Waste water	Contained Pollutant	Current treatment/utilization
Workshop	Туре	Category	measure
Mudding	Press	Mud suspended solids	Discharge into in-plant
workshop	machine filter		sedimentation tank, reused in
	pressing		ball mill machine
	water		
	Bar magnet	Mud suspended solids;	Discharge into sewage
	washing	Fine iron powder	treatment plant #1
	water		
Molding	Size mixing	Plaster suspended	Discharge into sewage
workshop	kettle	solids	treatment plant #1
	cleaning		
	water		
Glaze	Glaze mixing	Glazing suspended	Discharge into sewage
making	cleaning	solids	treatment plant #1
workshop	water		
Branch	Base	Mud suspended solids;	Discharge into sewage
plant #1	washing	Glazing suspended;	treatment plant #1
	water kiln	solids	
	cooling water	Heat	
Branch	Base	Mud suspended solids;	Discharge into sewage
plant #2	washing	Glazing suspended	treatment plant #2
	water kiln	solids;	
	cooling water	Heat	
Special	Kiln cooling	Heat	Discharge into sewage
ceramics	water		treatment plant #2
branch			
company			

Table 41: Generation and Treatment of Wasted Water

The enterprise has set up sewage treatment plant in branch plant #1 and #2, its treatment technology is: waste water-grilling well- regulating reservoir- dosing coagulating basin- multiple layer sedimentation tank- disinfection tank-recycling. Partly used for mudding workshop ball mill and floor cleaning, mostly discharged after treatment. Domestic waste water discharged after treating with grease trap and septic tank, partly used in surrounding farm irrigation.

The current waste water monitoring is shown in Table 42:

Monitoring program	рН	Suspended solids /(mg/L)	Chemical requirement (mg/L)	Animal or vegetable butter (mg/L)
Monitoring result	6.5-7.5	59	37	3.02
Standard limit value	6-9	50	50	3.0
Meet standard	Yes	No	Yes	No

Table 42: Overview of Wasted Water

Note: data comes from Liling city environmental monitoring station, monitoring report on 27th April 2010, monitor location is at discharging outlet for glazing waste water after treatment, water contained heavy metal is shown in Table 43.

Monitoring program	Pb(mg/L)	Cd(mg/L)	Hg(mg/L)	As(mg/L)
Monitoring result	0.007	0.002	0.0005	Not detected
Standard limit value	0.3	0.07	0.1	-
Meet standard	Yes	Yes	Yes	Yes

Table 43: Overview of Wasted Water

Note: monitoring data comes from Liling city environmental monitoring station monitoring report on 06th September, 2011, monitor location is the discharge outlet. According to Ceramics industry enterprise pollutant emission standards, suspended solids and animal and vegetable oil are unqualified according to waste water discharge standards, therefore suggesting to renovate the current waste water treatment station.

2) Waste gas treatment and utilization

Waste gas can be classified into two categories: the first category is industrial waste gas containing mainly industrial dust; this type of waste gas usually has low temperature, mainly from mudding and glazing ball mill, base dry finishing process, ceramics rubbing process; the second category is smoke mainly containing SO2 NO2 smoke, mostly coming from kiln sintering process. Detailed production and treatment is shown in Table 44:

Table 44: Generation and Treatment of Wasted Gas

Workshop	Waste Gas Type	Contained Pollutants	Current treatment/utilization measure
Raw material storage	Dust	Dust	Unorganized emission
Mudding Workshop	Ingredient Dust	Dust	Clean, partially unorganized emission
Glaze making workshop	Ingredient Dust	Dust	Clean, partially unorganized emission
Forming Workshop	Fine base dust	Dust	Unorganized emission
Inspection, packaging workshop	Mill bottom dust	Dust	Aspirator coefficient
Kiln workshop	Natural gas combustion	Dust, SO _{2,} NOx	Direct emission

According to *Ceramics industry enterprise pollutant emission standards*, when sintering oil or gas, roller kiln and tunnel kiln SO2 (standard state) emission concentration is 300mg/m³, smoke (standard state) emission concentration is 50 mg/m³, NO₂ emission concentration is 400mg/m³. Liling city environment monitoring station monitored the smoke exit of roller kiln on 27th April 2010, smoke blackness is Ringelmann level 1, SO₂, NO₂ smoke concentration is not monitored. According to "daily ceramics products pollution emission coefficient" in the *Industry Pollution Source Pollutant Emission Coefficient Manual*, calculating SO₂ and NOx in the kiln workshop: industrial waste gas is 5791.814m3/t product, smoke is 0.145kg/t product, SO is 0.038kg/t product, NO₂ is 0.579kg/t product, all direct emission. Getting: smoke (standard state) concentration is 25.08mg/m³, SO₂ (standard state) emission concentration is 100.1mg/m³. In summary, enterprise SO₂ and NO₂ emission are within limit.

3) Solid Waste Treatment and Resource Utilization

Enterprise solid wastes are mostly industrial solid waste and household garbage. The industrial solid wastes are general industrial solid waste, including screening deironing process produced waste residue containing iron, waste molds, waste kiln furniture, waste kiln base, waste ceramics, sludge and waste water treatment sludge, etc. Solid wastes generation of 2010 is shown in Table 45.

No.	Solid Waste	Output (t/a)	Current treatment measure	Note
1	Iron containing waste residue	79.8	no	Landfill with household garbage

Table 45: Generation of Solid Waste

2	Waste molds, molding pollution	1341.7	no	Cement plant recycle
3	Waste kiln base, mudding sludge	4443.2	no	Recycle
4	Waste ceramics	4814.95	no	Recycling
5	Waste kiln furniture	24	no	Plant recycle
6	Waste water treatment station sludge	168.9	no	Landfill with household garbage
7	Employee household garbage	245	no	Landfill
8	Total	11117.55		

Note: solid wastes cannot be accurately calculated. Therefore, data in the table is a calculation based on theory or estimation of actual usage data.

Table 46: Identification of Hazardous Waste of Sludge from Waste Water Treatment

Flant								
Category	Cu	Zn	Pb	Cd	Cr	Cr ⁶⁺		
Waste Water								
Treatment Plant	0.046	0.079	0.117	0.0006	0.235	0.037		
Sludge								
Standard	50	50	2	0.2	10	15		
(GB5085.3-2007)	50	50	3	0.3	10	C.1		

Plant

Note: monitor data comes from Liling city environment monitoring report, 14th October 2011.

① Waste Residue Containing Iron

Mainly generated from glazing, mudding workshop iron screening process, little generation. Calculated as containing 0.5% of Fe_2O_3 in the raw sludge, generally landfill in domestic garbage dump together with waste glaze sludge.

② Waste Molds

The main ingredient is $CaCO_{3}$, which is delivered to ceramics plant as raw material. The annual plaster usage is 1341.7t, and waste molds account for 1341.7t

③ Waste Blank

Including waste blank generated in forming workshop, residue mud from repairing the blank and waste mud returns to mud making workshop ball mill to recycle, do not discharge externally. Waste blank is calculated as 0.233t of recycled waste blank per 1t of ceramics production.

④ Waste kiln furniture

The company adopts the advanced roller kiln, kiln furniture using cordierite, mullite and silicon carbide made deck and holder, with a service life of 100-400 times. The little waste produced with kiln furniture goes to a kiln furniture plant or fireproofing material plant, being used as raw material for fireproofing material.

5 Waste Ceramics

Ceramics products have a qualification rate of around 70%, which means annually there are 4814.95t of waste ceramics generated and they are all crushed and reused in ball mill process.

6 Mud making Sludge

Generated in waste water sedimentation tank of raw material workshop, generally sludge generation is about 3% of production output, annually 506.8t. Back to mud making workshop ball mill process for recycling, does not externally discharge.

⑦ Waste water treatment sludge

Sludge generated from waste water treatment station branch plant #1 and #2, sludge generation is 1% of production output, annually 168.9t. Regularly cleaned and transported out of plant by Liling city sanitation department into landfill.

According to Liling city environment monitoring station on the waste water treatment station sludge, its leach liquor contains far less heavy metal than GB5085.3-2007 *Identification Standards for Hazardous Wastes- Identification for Extraction Toxicity* standard requirement. It is general industrial solid waste.

The enterprise should further enhance management, reduce waste ceramics generation or make it recycled, reduce the amount of mud entering into water. Therefore, it is considered that this enterprise has great cleaner production potential in waste management.

4) Noise treatment Performance

The main noise source of the enterprise is ball mill, vibrating screen, pugmill, forming machine, magnetic separator and all kinds of fans and pumps mechanical equipment. Noise source is shown in Table 47:

No.	Noise Source	Intensity	Location	Treatment	Discharge Intensity
1	Ball mill	85-95	Mud making workshop, glaze making workshop	Basic vibration reduction, plant sound insulation	75-85
2	Vibrating screen	85-95	Mud making workshop, glaze making workshop	Basic vibration reduction, plant sound insulation	75-85
3	Magnetic separator	85-95	Mud making workshop	Basic vibration reduction, plant sound insulation	75-80
4	Plunger pump	75-85	Mud making workshop	Basic vibration reduction, plant sound insulation	64-75
5	Pugmill	80-85	Mud making workshop	Basic vibration reduction, plant sound insulation	70-75
6	Sole	65-75	Forming	Basic vibration reduction,	60-70

Table 47: Intensity of Major Noise Source

	Rubbing		workshop	plant sound insulation,		
				sound proof door &window		
7	Induced	80.00	Forming	Vibration reduction device,	70.90	
1	draft fan	00-90	workshop	acoustic hood	70-60	
0	Forming	80.00	Forming	Vibration reduction	75.05	
8	machine	80-90	workshop	device	72-82	

Currently using workshop soundproof wall, sound attenuation, vibration reduction, range attenuation and enhancing equipment maintenance management, etc. to achieve sound insulation. Furnace induced draft fan has sealing treatment, large mechanical equipment like ball mill adopts rubber sheet as base to reduce vibration, reduce vibrating noise impact on surrounding environment.

Circadian Plant Boundary Noise Monitoring Result is shown in Table 48:

		Daytime		Nighttime		
Monitoring Location	Data/d B(A)	Standard Limit Value/dB (A)	Meet stan- dard	Data/d B(A)	Standard Limit Value/dB(A)	Meet stan- dard
Outside plant gate 1m	53.6- 58.9		yes	47.6-54 .3		yes
Outside furnace workshop wall 1m of plant #2	57.2- 59.8		yes	52.5-55	55	yes
Outside forming workshop wall 1m of plant #1	64.7- 66.0	65	yes	49.3-54 .2		yes
Outside mud making workshop wall 1m of plant #1	65.3- 66.9		no	54.7-55 .7		yes
Outside molding workshop wall 1m of plant #1	51.3- 56.8		yes	47.6-54 .3		yes

Table 48: Circadian Plant Boundary Noise Monitoring

Note: monitoring data comes from Liling city environment monitoring station monitor report on 27th April 2010.

With monitoring, except circadian noise of mud making, workshop plant #1 does not meet the requirements of *Boundary Noise Emission Standard for Industrial Enterprises*, while all the other boundary circadian noises meet the GB12348-2008 requirements. Therefore, the management on plant #1 should be improved so that enterprise noise meets the standard requirements.

(3) Cleaner Production Level Analysis

Cleaner production level is evaluated based on National Development and Reform Commission issued *Evaluation Index System of Ceramics Cleaner Production Industry (for trial implementation)*. According to cleaner production principal requirements and indexes measurability, ceramics industry indexes are two parts: quantitive index and qualitative index. See Table 49 and 50.

		Enterprice			
Primary Index	Index	Secondary Index	Index	Enterprise	Sco
	value	1	value	Performance	re
Compliance with implementing national focus		Over 70% products are exported	5	90%	5
		Lead-free	9	Lead release< 0.1mg/L	9
		Low temperature and fast firing	8	yes	8
		Above province level engineering (technology) center, testing base	3	yes	3
technology development (including	technology 50 development (including ceramics cleaner production technology)	Wastes comprehensive utilization	8	Furnace exhaust heat recycle	8
(including ceramics cleaner production technology)		All plant sewage treatment (second) and recycle	8	Built and used two sewage treatment systems, but waste water recycling rate is low	3
		Comprehensive use (or absorb) social wastes	9	Cannot absorb social wastes	0
Establish environmental management		Establish environmental management system and certified	10	Didn't establish environmental management system	0
system and cleaner production audit	25	Conduct cleaner production audit	15	Conducting cleaner production audit, unfinished	10
Compliance	25	Construction projects	5	Pass	5

Table 49: Qualitative Evaluation and Rating System of Domestic Ceramics Production
Enterprise

with	environmental			
implementing	production "three			
environmental	simultaneous"			
protection	implementation			
regulations	performance			
	Construction projects		Complete	
	environmental impact			
	evaluation system	5		5
	implementing			
	performance			
	Old pollution source		Finish	
	limit-time treatment	e	changing coal	c
	project completion	0	to gas	0
	performance			
	Pollutant total emission		Reach total	
	control performance	9	amount	9
			requirement	
Total		100		71

Table 50: Quantitive Evaluation and Rating System of Domestic Ceramics Production Enterprise

Primary Index	Weighted Value	Secondary Index	Unit	Weighted Value	Evaluation Reference Value	Actuality value	Score
(1)Energy Index		Comprehensi ve energy consumption	kgce/t ceramics	15	1240	307.5 5	15
	25	①Biscuiting Process energy consumption	kgce/t ceramics	② 10/n	520	265	5
		Glaze firing process energy consumption	kgce/t ceramics	10/n	450	244.9	5
(2)Resour- ce		Plaster consumption	t/t ceramics	3	0.20	0.091	3
Index	15	Raw material consumption	t/t ceramics	4	1.20	1.488	3.04
	15	Fresh water consumption per ton of ceramics	t/t ceramics	5	22 Normal ceramics	8.55	5

		Industrial water recycling rate	%	3	70		70		58.1	
		Discton madel		2	Roll -ing	150	100	1.33		
		usage time	times	2	slip cast -ing	80	60	1.5		
		Product lead release	mg/l	3	Compli with interna	iance tiona	<0.1	3		
	15	Product cadmium release	mg/l	3	Compli with interna I⑤	Compliance with internationa		3		
		Stained paper utilization	%	1	99		>99	1		
(3)Producti- on		Glaze slip utilization	%	1	9	99		1		
Technology Feature Index		Product qualification rate	%	3	99		67.2	2.04		
		Waste ceramics utilization	%	3	95		95	3		
		Waste plaster utilization	%	2	98		98	2		
		Waste base utilization	%	2	99		90	1.8		
(4)Compre- hensive Utilization	20	Waste glaze slip recycling rate	%	2	9	99		2		
Index		Unfired bricks recycling rate	%	2	9	8	98	2		
		Furnace exhaust heat utilization	%	5	7	70		5		
		Comprehensi ve utilization product value	yuan/t ceramics	4	15	50	70	1.5		
(5)Pollutant Index	25	External emission	m ³ /t ceramics	4	0.5 No cerami	rmal cs	6.26	0.5		

	waste water					
	Waste water PH value		1	6-9	pass	1
	Total lead	mg/l	3	1.0	pass	3
	Total cadmium	mg/l	3	0.1	pass	3
	COD	mg/l	3	150	pass	3
	SS	mg/l	3	200	pass	3
	SO ₂ Emission concentration	mg/m ³	3	1430	pass	3
	Boundary noise (daytime)	Leq[dB(A)]	1	65	pass	1
	Boundary noise(nightti me)	Leq[dB(A)]	1	55	pass	1
	Smoke (dust) concentration	mg/m ³	3	400	pass	3
	Total					88.7 1

1 Only check when twice sintering

@ The value of n: n=1 when once sintering, n=2 when twice sintering

①The same as GB12651-2003 *Contact-Food Ceramic Lead and Cadmium Release Limit* Note: evaluation reference value has the same unit as its corresponding index.

Comprehensive evaluation index is an index describing and evaluating the enterprise's overall cleaner production level in the audit year. The difference of cleaner production comprehensive evaluation scores of domestic large and mediums-size ceramics enterprises can reflect the gap between cleaner production levels.

Comprehensive evaluation index has the following calculation formula:

P=0.7P₁+0.3P₂

In which,

P-clean production comprehensive evaluation index of enterprises

 P_1 , P_2 - sum of all secondary indexes evaluation scores in quantitive evaluation, and sum of all secondary indexes evaluation scores in qualitative evaluation.

According to current domestic ceramics industry actual performance, *Evaluation Index System of Ceramics Cleaner Production Industry (for trial implementation)* comprehensive evaluation index of different levels of cleaner production enterprises is shown in Table 51

Cleaner production enterprise level	Cleaner production comprehensive evaluation index	
	Daily ceramics production enterprise	
Advanced cleaner production enterprise	Pdva	
Cleaner production enterprise	70an<80	

Table 51: Evaluation Index of Enterprises of Different Level in Ceramic Industry

It is shown from Table 74 and 75 that this enterprise has a qualitative evaluation score of 71 and a quantitive evaluation score of 88.71, and after calculation its comprehensive index is 83.4. Hence, this enterprise is an advanced cleaner production enterprise.

The unmet standards are mostly raw material consumption, water recycling, plaster model usage times, product qualification rate and external water emission, etc. It has certain cleaner production potential.

(4) Industry Policy Analysis

Catalogue for Guiding Industry Restructuring (2011 Version) encourages: production and technology/equipment development for special designed ceramics, including industry, medical, electronics and aerospace, etc.; ceramics cleaner production and comprehensive utilization technology development.

Catalogue for Guiding Partial Industry Industries on the Elimination of Outdated Production Process Equipment and Products (2010 Version) regulates to eliminate: building sanitary ceramic kiln, down-draft kiln, multi-passage kiln, coal burning Open flame tunnel kiln, muffle tunnel kiln and sagger-installed sanitary ceramics tunnel kiln

Catalogue for Guiding National Key Industries on Cleaner Production Technology (third group) recommends: little air fast drying technology. Using low temperature and high humidity method, wet body in the low temperature section the body surface vapor pressure keeps increasing, prevent external diffusion, the absorbed heat is used to increase body internal temperature, increase internal diffusion speed, so that the pre-heating period is shortened.

Policy Research on Ceramics Industry Resource Consumption and Industry Restructuring points out:

First, continue to guide ceramics industry, especially daily ceramics to develop towards "5 changes", to achieve raw material standardized, fuel purified, auxiliary material professionalized, production process modernized, products upgraded.

Second, enhance product added value, in addition to improve product quality, more importantly improve product design level, decoration level, product design has the courage to innovate and diversified development. Daily ceramics can boldly use art ceramics decoration method.

Third, the specific policy requirement on ceramics industry development is to adjust partial products structure, priority to the development of daily ceramics and sanitary ware, environmental ceramics, micro ceramic tile, glazed tile; prohibit the usage of solid liquid fuel on limited time, encourage the use of natural gas, hydraulic energy and solar energy. This is the key to promote cleaner production.

This ceramics enterprise has roller kiln sintering production technology, and use afterheat to dry; the enterprise produces special kind ceramics, all belong to the encouraged category of *Catalogue for Guiding Industry Restructuring (2011 Version)*; and contains no products or technology and equipment that belong to limited category or elimination category of *Catalogue for Guiding Industry Restructuring (2011 Version)* or *Catalogue for Guiding Partial Industries Elimination Outdated Production Technology and Equipment (2011 Version)*. The enterprise is now striving to develop high added value daily ceramics such as high-end wine bottle to comply with the requirements from *Policy Research on Ceramics Industry Resource Consumption and Industry Restructuring*

(5) Cleaner Production Potential.

Based on the current production status of this enterprise, combining industrial technology development and national industrial policy requirements, the enterprise has potential to improve cleaner production in the following aspects:

First, raw and auxiliary material aspect: the storage and management of raw material need to be further regulated. The enterprise has a common phenomenon of fresh water "run, emerge, drip or leak", some sections use fresh water instead of recycled water which leads to over consumption of fresh water, does not comply with cleaner production requirement. The enterprise should reduce fresh water usage by enhancing management, change to water saving equipment, improve equipment maintenance, etc. In addition, there commonly exists the problem of weak energy saving awareness and sever water resource waste.

Second, technology aspect: ceramics industry is mainly an artisan craftsmanship. However as the society develops should develop and utilize automated process.

Third, equipment aspect: there are breakdowns in equipment, should enhance equipment maintenance and repair, reduce equipment failure rate.

Forth, process control aspect: enhance operation post motivation and punishment scheme, improve staff activity to further increase product qualification rate.

Fifth, product aspect: product qualification rate needs to be improved.

Sixth, waste aspect: water is not fully utilized; waste storage is in disorder without setting a uniform storage site. It is suggested for this enterprise to improve on waste management.

Seventh, management aspect: pulverizer and air compressor have strong noise, need to enhance equipment maintenance and repair.

Eighth, staff quality aspect: ceramics is a typical labor intensive industry, the enterprise should regularly educate its staff on cleaner production relevant knowledge, and coming with the post feature to conduct post cleaner production competition, improve staff post operation skill.

(6) Cleaner Production Targets

Based on enterprise development planning, cleaner production index evaluation goals and key improvement potentials, the cleaner production audit targets are set. See Table 52:

			Short-ter	m targets	Medium/long-term		
	Secondary	Current Status		(201	1-12)	targets	(2013-9)
No.	Index			Absolu- te value	Relative value	Absolu- te quantity	Relative value
1	Comprehensive energy consumption (kgce/t ceramics)	307.55		292.2	Decreas e by 5%	271.3	Decrease by 7.2%
2	Industrial fresh water (t/t ceramics)	8.55		5.8	Decreas e by 32.2%	2.8	Decrease by 51.7%
3	Raw material consumption (t/t ceramics)	1.48	8	1.25	Decreas e by 16%	1.11	Decrease by 11.2%
		Rolling	100	150	Increase by50%	150	Increase by 0%
4	Plaster model usage times	Hydrau -lic pres- sure	60	80	Increase by33.3%	80	Increase by 0%
5	Product qualification rate (%)	67.2	2	85	Increase by26.5%	90	Increase by5.88%
6	Water recycling rate (%)	15.6		70	Increase by348.7 %	90	Increase by28.6%
7	External sewage emission (m ³ /t ceramics)	6.26		3.5	Decreas e by 44.1%	0.5	Decrease by 85.7%
8	Comprehensive utilize (or absorb) social wastes	Unutili	zed	By 2013 comprehensively utilize enterprise waste ceramics, waste sludge and part of ceramics enterprises' waste ceramics of Liling city.			enterprise I part of nics of Liling

Table FOLOW	amilan of T	areata of	Cleaner	Draduation	۸ م انا
Table 52: UV	erview of T	argets of	Cleaner	Production	Audii

(7) Formulate Audit Focus

The audit group based on cleaner production audit methodology, integrating this ceramics enterprise's actual performance, environmental monitor reports data of environmental protection department and national industry policy requirements, comparing with ceramics industry cleaner production index system, formulate that the alternative audit focus are bran plant #1 and 2, special ceramics branch company during production process.

Audit working group adopts the weighted scoring method, scores based on the coefficients of weighted factors and formulate the audit focus of this cleaner production work:

			Alte	rnative Au	dit Focus S	Score	
Factor	Weight- ing 1-10	Branch Plant #1		Branch Plant #2		Special Ceramics Plant	
		R	RW	R	RW	R	RW
Raw material and energy consumption	10	10	100	7	70	6	60
Pollutant Generation	9	7	63	7	63	6	54
Cleaner Production Potential	7	8	56	7	49	6	42
Staff Cooperation	3	8	24	7	21	8	24
Total Score		243		203		180	
Rank			1	2	2	3	

Table 53: Determining the Focus of Audit via Weighted Scoring Method

With the analysis of weighted scoring method, bran plant #1 is the audit focus of this round of cleaner production.

(8) Pre-audit Stage Cleaner Production Plan

In the pre-audit phase, researching the overall production performance of this enterprise from 8 aspects of the production process (raw/auxiliary material and energy, technology process, equipment, product, process control, staff, management and wastes generation/emission). According to the current problems and cleaner production potential the audit working group formulates cleaner production potential of this stage, in total 21 items. See Table 54:

No.	Current Problem	Improvement Measure	Improvement Result	Investm ent/10⁴ yuan
	Vacuum pump oil	Oil seal is damaged, need	Reduce oil	
F1-1	leakage	to be replaced in time	leaking, save	0.1
			resources	
	Too much dust in	Timely clean raw material	Raw material	
	raw material storage,	storage dust	recycle, reduce	
F1-2	goods are randomly		material	0
	storage and lead to		consumption	
	waste			
	Belt roller is scaling	Timely clean belt roller	Save raw	
F1-3	and result in uneven		material, save	0
	beit snaking and		cleaning time	
	Rain leakage in the	Repair raw material	Save raw	
	raw material storage	storage roof effectively	material	1(estimat
F1-4	and cause raw	prevent water	prevent water	ion)
	material loss	contamination	contamination	
	Mud-making and	Turn off water in time	Save water	
	glaze making			
F1-5	workshops have			0
	running water, sever			
	waste of water			
	Vacuum equipment	Cooling water recycling	Recycle and	
F1-6	has unrecycled		utilize cooling	3(estimat
110	cooling water, huge		water, save	ion)
	waste		water resource	
	Mud-making	Improve ingredient	Reduce energy	
F 4 7	workshop ball mill	management	consumption,	5(estimat
F1-7	has huge noises		reduce single	ion)
	Molding workshop	Enhance staff working skill	ZII. Reduce	
F1-8	plaster material is	training	material loss	0.2
110	old	liannig	materialiooo	0.2
	Slight flying dust at	Enhance operation	Reduce dust	
F1-9	compounding exit	management, hand out	pollution	0.2
		masks		
E 1	Glaze making	Increase vibration isolator,	Reduce noise	
10	workshop ball mill	hand out earplugs	pollution	0.2
10	has huge noise			
F1-	Base material breaks	Enhance operation	Reduce base	0

Table 54: Overview of Cleaner Production Potential on Pre-Audit Stage

11	during base vehicle transporting	management	material loss, reduce	
			material consumption	
F1- 12	Outer layer of wind pipe is broken and wind leaking in branch plant #1	Wind pipe maintenance	Reduce energy consumption	1(estimat ion)
F1- 13	Compressor motor is damaged in branch plant #2	Replace the motor	Ensure equipment well-functionin g	5(estimat ion)
F1- 14	Compounding has low accuracy	Check all raw material moisture before compounding, ensure the accuracy of ingredients	Save raw material	0
F1- 15	Waste vacuum oil is not recycled	Timely recycle vacuum oil	Reduce pollution	0
F1- 16	Enterprise does not use energy saving lights	Replace energy saving lights and reform circuit for the whole enterprise	Reduce energy consumption	15(estim ation)
F1- 17	Glaze making workshop has weak water emission	Expand and reform drainage channel	Reduce pollution	1(estimat ion)
F1- 18	Low cleaner production awareness of staff	Carry out education and training on cleaner production	Enhance staff energy saving awareness	0
F1- 19	No water, electricity and gas meter in the branch workshops	Install resource meters	Increase energy metering management, save energy consumption	80(estim ation)
F1- 20	High energy consumption during stoneware dry molding	Expand workshops, first use natural drying for base molding then enters the drying room	Reduce energy consumption	100(esti mation)
F1- 21	Enterprise does not separate rain and sewage pipe network	Currently rain water and sewage use the same pipe network. It should have separated reforming, recycling ceramics mud and glazing mud from sewage.	Reduce energy consumption	120(esti mation)

3.3.3 Cleaner Production Evaluation

Working focus at this stage is actual measurement of input/output material flow, establish material balance, water balance and energy balance, analyze main reason for waste generation and formulate cleaner production plans. Based on audit focus analysis, the cleaner production audit focus is branch plant #1, its material balance, energy balance and water balance of the whole plant.

(1) Audit Focus: Branch Plant #1

1) Overview of Branch Plant #1

Operation performance and technology process is shown in Table 55 and Figure 13:

No.	Process	Unit Operation Content
1	Molding	Put the sintered ceramic mud into template jigger for template
	Molaing	molding, plastic molding or slip molding
2	Sharponing	Wet mending the base material, or sharpening the slipped molding
2	Sharpening	base material
3	Drying	Put base material in the drying room
4	Fine Base	Dried base material for fined dry mending
	Washing	Washing water the fine base, glaze internally or externally based on
5	water,	requiremente
	glazing	
		Load the kiln car with glazed products based on certain requirement
6		and proportion, automatically or manually send into the furnace for
	sintering	sintering on fixed temperature curve.
7	Quality	Inspect the products one by one based on national standards,
	inspection	enterprise standards and international standards
8	Packaging	Packaging qualified ceramics based on order requirements

Table 55: Operation Conditions of Branch Plant #1

Figure 13: Technology Process of Branch Plant #1

2) Raw Material Balance Data

Raw material balance is shown in Figure 14:

Figure 14: Raw material balance of Branch Plant #1 (Unit: t/d)

3) Two "high" and One "heavy" Analysis

The following conclusions can be drawn from the material balance analysis of branch plant #1:

1 High Dust Emission

There is dust generation at every dry fine base spot and unorganized discharged. It is recommended to use aspirator to collect the dust, operator should wear a mask, recycle fragments and maintain site clean.

2 High Waste Ceramics Generation

It is shown from the balance analysis that there produces 22t of qualified ceramics per day and 7.216t of waste ceramics. Therefore the qualification rate of branch plant #1

is 67.2%, far below the index requirement of 90%. There are several reasons for the low qualification rate: a. all the products are exported and the exporting countries have higher qualification standards than China. This is the main reason for this low qualification rate. Hence, there are part of waste ceramics being domestically sold as off sorts. Some waste ceramics are recycled after grinding and enters ball mill process; b. part of the waste ceramics have defects such as out-of-round holes/trimming and uneven glazing. Therefore should reinforce the training on staff working skills. For example when vacuum mud-making, only conduct mud-making after reaching vacuum index value. Control the mud added amount and maintain a moderate speed of mud adding.

③ Heavy Waste Water Emission

It is shown from the balance analysis that there produces 22t of qualified ceramics per day and 3.083t/t ceramics of waste water emission, far more than the standard value of 0.5t/t ceramics. Branch plant #1 has waste water treatment station but low recycling rate, this leads to huge fresh water consumption and external emission. The sediment sludge of the treatment station is regularly transported out of the plant by Liling city sanitation department and delivers to landfill. The sludge is mainly composed of recyclable material such as mud material, glaze material and plasters. If the sludge is calculated as 1% of production output, then annually generate 168.9t of sludge. After discussion with company technician, it is recommended to separately collect and discharge waste water to mud making workshop, glaze making workshop and molding workshop. Aiming to achieve the goal of waste utilization and material recycling.

(2) Whole Plant Energy Calculation

1) Energy Basic Data

According the enterprise's energy consumption data on January 2011, energy consumption performance is shown in Table 56:

Energy	Usage	Standard Coal(kgce/ month)	Department		Usage (m³/month)	Standard Coal (kgce/mo nth)
				Main furnace	127293.6	154534.4
Natural (gasm ³ / month)	210406	255432. 9	Branch plant #1	Hot-blast stove	14040	17044.6
				Kiln	600	728.4

Table 56: Energy Consumption in Jan.2011

				grouting stand	6150	7466.1
					Subto	tal:
				-	179773.5(kg	gce/month)
				Main furnace	39300	47710.2
			Branch plant	Hot-blast stove	7680	9323.5
			#2	Kiln	9502.4	11535.9
					Subto	tal:
				-	68569.6(kg	ce/month)
			Special ce plant	eramics	2160	2622.2
			Technolog	gy Center	1200	1456.8
			Developm departme	nent nt	2480	3010.7
				Total: 255	5432.8(kgce/mon	th)
		2				
Energy	Usage	(kgce/n nth)	Depai	rtment	(kW∙h/month)	(kgce/mo nth)
Energy	Usage	(kgce/n nth)	Depar Branch pl	rtment ant #1	(kW·h/month) 59935	(kgce/mo nth) 2.977.25
Energy	Usage	(kgce/n nth)	Depar Branch pl Branch pl	rtment ant #1 ant #2	(kW·h/month) 59935 28000	(kgce/mo nth) 2.977.25 9800
Energy	Usage	(kgce/n nth)	Depar Branch pl Branch pl Special co plant	rtment ant #1 ant #2 eramics	(kW·h/month) 59935 28000 4520	(kgce/mo nth) 2.977.25 9800 1582
Energy	Usage	(kgce/n nth)	Depar Branch pl Branch pl Special ce plant Mudmakin workshop	rtment ant #1 ant #2 eramics	(kW·h/month) 59935 28000 4520 83602	(kgce/mo nth) 2.977.25 9800 1582 2926.7
Energy Electrici- ty	Usage	(kgce/n	Depar Branch pl Branch pl Special ce plant Mudmakin workshop Glaze ma workshop	rtment ant #1 ant #2 eramics ng king	(kW·h/month) 59935 28000 4520 83602 9221	(kgce/mo nth) 2.977.25 9800 1582 2926.7 3227.35
Energy Electrici- ty (kW·h/m	Usage 201562	(kgce/u (tru	Depar Branch pl Branch pl Special co plant Mudmakin workshop Glaze ma workshop Molding w	rtment ant #1 ant #2 eramics ng king vorkshop	(kW·h/month) 59935 28000 4520 83602 9221 922	(kgce/mo nth) 2.977.25 9800 1582 2926.7 3227.35 322.7
Energy Electrici- ty (kW·h/m onth)	Usage 201562	(kgce/u (tr	Depar Branch pl Branch pl Special co plant Mudmakir workshop Glaze ma workshop Molding w Technolog Center	rtment ant #1 ant #2 eramics ng king vorkshop gy	(kW·h/month) 59935 28000 4520 83602 9221 922 1600	(kgce/mo nth) 2.977.25 9800 1582 2926.7 3227.35 322.7 560
Energy Electrici- ty (kW·h/m onth)	Usage 201562	(kgce/u 70546.7	Depar Branch pl Branch pl Special ce plant Mudmakin workshop Glaze ma workshop Molding w Technolog Center Developm Departme	rtment ant #1 ant #2 eramics ng king vorkshop gy nent ent	(kW·h/month) 59935 28000 4520 83602 9221 922 1600 8400	(kgce/mo nth) 2.977.25 9800 1582 2926.7 3227.35 322.7 560 2940
Electrici- ty (kW·h/m onth)	Usage 201562	(kgce/u	Depar Branch pl Branch pl Special ce plant Mudmakin workshop Glaze ma workshop Molding w Technolog Center Developm Departme Househol electricity	rtment ant #1 ant #2 eramics ng king vorkshop gy nent ent d	(kW·h/month) 59935 28000 4520 83602 9221 922 1600 8400 5362	(kgce/mo nth) 2.977.25 9800 1582 2926.7 3227.35 322.7 560 2940 1876.7

Note: natural gas average lower heating value is 3893kJ/m³, electricity average lower heating value is 3600kJ/ kW·h, equals standard coal coefficient 0.35kgce/ kW·h.

2) Energy Consumption Analysis

The following conclusions can be drawn from the above data and on-site analysis:

①Natural gas usage of the whole plant equals standard coal 255432.8kgce/month, plant #1 uses natural gas equivalent to standard coal 179773.5kgce/month, account for 70.38%. Therefore plant #1 is the major energy consuming department of the enterprise. Sintering process has the largest energy consumption in plant #1, and roller kiln and drawer kiln equipment are aging. After discussing with technician, it is suggested to renovate and update plant #1 to reduce energy consumption.

⁽²⁾ The whole enterprise uses electricity equivalent to standard coal 70546.7kgce/month, mud making workshop uses electricity equivalent to standard coal 29260.7kgce/month, accounting for 41.48%. Therefore mud making is one of the major energy consuming departments. Mud making workshop has major energy consuming equipment such as ball mill, plunger pump, vacuum pump, etc. Ball mill time is 11-14h each time. After discussing with company technician, it is suggested to develop new energy saving ceramics material to shorten unit ball mill time, therefore to reduce energy consumption.

Therefore, if the enterprise enhance and improve on technology, equipment and management, reinforce equipment maintenance and replacement, adopt advanced technology, then it could reduce energy loss and achieve its cleaner production targets.

(3) Enterprise Water Balance

1) Water Balance Data and Procedure

This ceramics had incomplete water consumption data due to the lack of metering devices, in addition water using processes like cooling water and rinse water cannot be measured. Given that it is very difficult to measure the internal water usage due to the condition, this report only roughly analyses water input and output for water balance measurement. According to field data provided by the enterprise, water is mostly consumed in mud making workshop, glaze making workshop, plant #1 and 2, special ceramics plant and household water usage. Detailed data is shown in Figure 15:

Figure 15: Enterprise Water Balance (Unit: t/d)

2) Water Loss Analysis

By measuring input and output water the corresponding water balance chart is obtained. With water balance and field investigation analysis, the following conclusions are drawn:

1 Low water recycling rate

Due the huge water demand in mud making workshop ball mill, glaze making workshop, plant #1 and 2 washing water process, in which ball mill and water washing could use recycled water. However the enterprise only uses part of the recycled water from waste water treatment station. Vacuum pump and other cooling water required equipment use a lot of fresh water for cooling, the cooling water does not contain other substances and is pure but they are discharged directly into water treatment station. Water recycling rate is low and results in deadweight loss of water resource. (2) Staff quality needs to be further improved.

It is known from the initial site investigation and conversation with staff, due to the low staff qualify and lack of water saving awareness, there are long-time running water in many steps like water washing or floor rinsing.

③ Incomplete metering

The enterprise does not have water meters, should complete water metering device establishment and management, it is beneficial to discover cleaner production potential in water consumption.

By enhancing management, optimizing process control and control water consumption, there is significant economic benefit and environmental benefit.

(4) Audit Phase Plan Overview

According to conclusions drawn from material balance, water balance and energy audit and combining with the discovered problems during performance investigation, the audit team proposes cleaner production audit problems in this stage and 9 cleaner production potential aspects. The potential is shown in Table 57:

No.	Problem	Improvement Measurement	Improvement Result	Investme nt/ 10 ⁴ yuan
F2-1	Ball mill conveyor broken	Timely replace	Ensure equipment well-functioning	1
F2-2	Splashing Slurry	Control the distance between sludge exit and vibrating screen, prevent slurry splashing	Save raw material	0
F2-3	Holes in vibrating screen	Inspect vibrating screen, timely replace if have holes	Improve equipment working efficiency	0.5
F2-4	Air bubble in glazing process	Only start mud making after achieving vacuum index, control mud adding amount and maintain a moderate speed	Reduce blowhole, increase product qualification rate	0
F2-5	Leakage during rough blank grouting operation	Tighten the molds to prevent leakage; grouting speed should be slow, product grouting must be controlled separately; do not over grouting; do not use broken baskets for grouting; careful with grouting operation, control grouting and slurry adsorption time, control base thickness; property recycle grouting residue.	Save raw material	0
F2-6	Raising dust during fine	Use dust cleaner to collect dust at every dry/fine base, operator should wear mask. Properly collect base	Reduce dust pollution	5

Table 57: Overview of Cleaner Production Potential on Audit Stage

			1	
	base	chips, keep site clean		
	Furnace	Sintering process has high energy	Reduce energy	
	equipment	consumption, and dust roller kiln,	consumption	
F2-7	aging in	drawer kiln equipment are aging.		100
	branch	Suggest to renovate and update plant		
	plant #1	#1 furnace.		
	Unit ball	Mud making workshop unit ball mill	Reduce energy	
	mill time is	time is 11-14h. After discussing with	consumption	
F2-8	long	enterprise technician, suggest to		100
		develop new energy saving ceramics		
		material, shorten unit ball mill time.		
	Unrecy-	Waste water treatment station sludge	Save raw and	
	cled	is regularly transported out of the	auxiliary	
	sludge in	plant by Liling city sanitation	material, reduce	
	waste	department, to landfill at garbage	energy	
	water	disposal plant. These sludge are	consumption	
	treatment	mainly composed of mud, glaze and		
	station	plasters recyclable material. After		
		discussing with technician, suggest to		
E2-0		separately collect and discharge		7800
12-3		waste water for mud making		7000
		workshop, glaze making workshop		
		and molding workshop, and also		
		improve waste water treatment		
		technology in order to reach the goal		
		of waste water utilization and material		
		recycling. It can also recycle other		
		ceramics plants mud wastes of Liling		
		city.		

3.3.4 Generation and Selection of Plans

(1) Generation and Summarizing, Selection and Categorizing of Plans

①Plans category

Audit group collects and summarizes 30 cleaner production plans and reasonable suggestions. After assessment, the plans are categorized according to investment.

Plan Types Index Range/10 ⁴ yuan	
No cost	0
Low cost	≪10
Medium cost	10 <x≪100< th=""></x≪100<>
High cost	>100

Table 58: Classification of Types of Plan

(2) Plans Selection

Audit group collects in total 30 cleaner production plans and categorize in investment order. There are 23 low/medium cost plans and 7 medium/high cost plans.

(3) Plans Summary

After previous plan selection, there are in total 30 implementable plans, in which 7 medium/high cost plans and 23 low/medium cost plans. Based on the cleaner production audit guideline of implementing while having effect, all the no/low cost plans are implemented. In total invested 230000yuan in no/low cost plans and gained economic benefit of 455000yuan/year. No/low cost plans and medium/high cost plans are summarized in Table 59:

No.	Plan type	Index range/10⁴yuan	Plan Serial No.
1	No cost	0	F1-2、F1-3、F1-5、F1-8、F1-11、F1-14、
			F1- 15、F1-18、F2-2、F2-4、 F2-5
2	Low cost	≪w	F1- 1、F1-4、 F1- 6、F1- 7、F1- 9、F1-10、
			F1-12、 F1-13、F1-17、F2-2、F2-3、F2-6
3	Medium cost	10 <x0ium< td=""><td>F1- 16、F1- 19、F1- 20、F2-7、F2-8</td></x0ium<>	F1- 16、F1- 19、F1- 20、F2-7、F2-8
4	High cost	>100	F1-21、F2-9

Table 59: Summary of Plans

3.3.5 Feasibility Analysis

In the plans generation and selection phase, there are initially 7 medium/high cost plans selected, part of the plans like F1-16 (energy saving lights replacement and circuit reform plans), F1-19 (install energy metering device plans) and F1-20 (stoneware molding technology reform plans), although they are medium/high cost plans but they are only reforms for metering, lights and plants, they do not impose negative impact on the environment and have no technology difficulties. This report will not elaborate on their technological, environmental and economic benefit evaluation. Now take two medium/high cost plans "energy saving ceramics material development plans", "Cleaner Production Demonstration Project in Configuration Improvement of Standardized Mudglaze Mold "as examples for feasibility analysis.

(1) Evaluation on "Energy saving ceramics material development" plan

1) Technology Evaluation

The main technological measures of this plan are:

① The sintering temperature of industrial ceramics is 1350°C, can be reduced to 1250-1260°C by adjusting base material formula. Measures are to self-produce mud material instead of external purchase and adjust the formula. So that on the condition of ensuring molding plasticity and product physicochemical properties, add flux, try to reduce 100°C of sintering temperature. It is estimated to save 30-40% of energy.

- ② The sintering temperature of **high whiteness fine ceramics is** 1250-1260°C, can be reduced to 1180-1200°C by adjusting base material formula. Measures are that on the condition of ensuring ceramics performance, add flux, use high whiteness and strong plasticity performance materials, try to reduce 50°C of sintering temperature. It is estimated to save 10-20% of energy.
- ③ The sintering temperature of medium/high-end wine bottles is 1250-1270°C, can be reduced to 1180-1200°C by adjusting base material formula. Measures are that on the condition of ensuring ceramics performance, add flux, reduce clay usage, try to reduce 70°C of sintering temperature. It is estimated to save 10-22% of energy.
- ④ By adjusting formula, using small particle material for the ball mill to reduce 1-2h of ball mill time.

In summary, energy saving ceramics material development: estimated to save natural gas 20% per year, in 2010 the enterprise gas usage is 2749668m3, could save natural gas 2749668*20%=549933.6 m3. If natural gas purchase cost is 2.5yuan/m3, then could save fuel cost 1374800yuan; estimated to save electricity 10% per year, in 2010 the electricity usage is 2978760kW·h, then could save electricity cost 2978760*10%=297876 kW·h. If electricity purchase cost is 1.0yuan/ (kW·h), could save cost 297900 yuan.

2) Environment Evaluation

After implementing this plan, could reduce natural gas consumption 549933.6 m³ per year. According to pollution emission coefficient of daily ceramics products in the manufacturing industry, estimated to reduce dust emission 13.79t per year, SO₂ emission 36.12t, NO₂ emission 55.04t; reduce electricity consumption 297876 kW h per year, equals to standard coal 104.56t/a, estimated to reduce SO₂ emission 3.14t and ash residue 15.67t.

This plan could reduce waste gas and dust emission, cut dust pollution from the source, achieve the result of energy saving, consumption reduction and environmental protection.

3) Financial Evaluation

(2) "Cleaner Production Demonstration Project in Configuration Improvement of Standardized Mudglaze Mold" Plan Evaluation

1) Technology Evaluation

The main technological measures of this plan are:

① Standardized mudglaze ingredient preparation

Natural raw material are quite different in its condition and purity due to difference in origin and internal structure, resulting in diversity in mineral composition, chemical composition and Physical and chemical properties. The key of standardized mudglaze material preparation is to have raw materials with reasonable and stable chemical composition and the necessary physical performance, ensure to stay stable within the

maximum allowable fluctuation range. The main technology features are selecting proper and advanced refined processing integration technology. Through entrance storage prehomogenization, straight homogenization, pulp chest homogenization, blending and mandatory mixed method multiple joint controlling ingredient homogenization; precipitation method and whirl method multilayer joint mechanical desanding and deironing; ball mill and delaminating combined ultrafine grinding, screening; High gradient magnetic separation multiple joint fine grading and deironing refinement, use the new technology and equipment of flocculence and filter pressing combining thickening and dehydration method. Use proper computer monitor technology, mainly use computer auto-control ingredient blending technology, X ray fluorescence analysis, laser particle size analysis, etc. reinforced monitor and control measures, to achieve the final goal of mudglaze stabilization.

② Standardized mold preparation

Plaster mold is the auxiliary tool widely applied to injection moulding and slip casting in the daily ceramics industry. It has the advantages of large porosity and Water absorption, but mechanical strength is weak and heat resistance and therefore a short service life. Hence, research on increasing plaster mold mechanical strength and surface quality has raised the attention of many enterprises. The disadvantages of plaster molds are largely depending on natural plaster purity and mold preparation methods, also slip casting technology control. Standardized mold preparation plans to introduce advanced mold production technology, use plaster vacuum molding equipment and high frequency vibration technology, eliminate air bubbles in gypsum plaster, increase mold density and strength, surface finish, prolong mold service life. Change the traditional fine base method, reduce fine base workload, beneficial for increasing ceramics surface flatness, in order to improve plaster mold quality still need to active experiment and promote adding Water soluble additives and synthetic resin during plaster mold making, to increase mechanical strength of molds and enhance abrasion resistance of working surface.

③ Add sewage treatment station, achieve zero emission

Standardized mudglaze configuration center estimates that total water usage is $1590m^3/d$, combining with the actual water usage of configuration center and water usage of old plants, this plan adopts water recycling and achieves zero emission. Estimated mud making water usage 800 m³/d, waste water mission 640 m³/d; glaze making water usage 670 m³/d, waste water mission 600 m³/d; molding water mission 120 m³/d, waste water mission 100 m³/d, in total waste water emission 940 m³/d. After waste water goes through the newly added sewage treatment station, 400 m3/d of water is reused for ball mill, the rest is used for floor washing, greening and flushing toilet.

④ Absorb social solid wastes

Absorb sludge generated from enterprise waste water treatment station, waste ceramics, sludge and other solid wastes generated from other ceramics plants of Liling city, and treat with grinding, screening and ball mill, reuse in standardized mudglaze preparation raw material.

After a joint discussion between cleaner production audit group and enterprise technical department, this plan is feasible in implementation, estimated to produce standard glaze 16500t/year, standard porcelain clay 165000t/year, and standard mold 8250t/year.

2) Environment Evaluation

By implementing this plan, estimated to reduce waste water emission 940 m³/d, yearly 329000m³, by reducing glazed waste base and waste ceramics 2400t/a, reduce waste water and treatment sludge 920t/a, reduce cadmium 32.9kg/a, lead 329kg/a. Significant environmental benefit.

3) Financial Evaluation

3.3.6 Plan Implementation

In this cleaner production audit, by detailed investigation on production technology process, pollution generation and emission phases and cleaner production site, formulates 30 cleaner production plans (23 no/low cost plans and 7 medium/high cost plans), implemented 23 no/low cost plans (implementation rate 100%), implemented 1 medium/high cost plan, implementing 1 medium/high cost plan, planning to implement 5 medium/high cost plans.

After pre-audit and all plans implemented, the ceramics enterprise has improved all its cleaner production indexes to some extent: reaching 12 qualitative secondary indexes, index value improves from 71 to 90; reaching30 quantitative secondary indexes, index value increases from 88.71 to 95.58. This enterprise could reach the current cleaner production standard system requirement.

(1) Economic Benefit

In total invested 230000yuan in no/low cost plans, gained 455000yuan/year economic benefit; invested 83150000yuan in medium/high cost plans, could gain 24069400yuan economic benefit; return on investment is 29.4%, return on investment period 3.4 years. By implementing the plans, saves water 329000t/year, water saving benefit 317200yuan/year, saves natural gas 640249.68m³/a, gains benefit 1600600yuan/year.

(2) Environment Benefits

Reduce dust emission 14.748t/a, reduce SO_2 emission 40.796t/a, reduce NO_2 emission 58.757t/a, reduce ash residue 15.67t/a, reduce cadmium 32.9kg/a, lead 329kg/a, reduce solid waste like glazing waste base, waste ceramics 2400t/a, reduce waste water treatment sludge 920t/a.

With this cleaner production audit, the enterprise gains significant results on energy saving, consumption reduction, pollution reduction and effect enhancing.

3.3.7 Continuous Cleaner Production

Keeping cleaner production is the final phase of this round of cleaner production audit. The goal is to make the cleaner production work to be continuously implemented in the long run. Work focus at this stage is to keep improving cleaner production organizing institution, establish management system to promote cleaner production implementation, formulate continuous cleaner production plans.

4 Evaluation of Green Building Material

4.1 Management of Green Building Material Evaluation Certificate

To implement the requirements of Guiding Opinions of the State Council on Resolving Serious Production Overcapacity Conflicts ([2013]41 of the State Council), Notice of the State Council on Issuing the Air Pollution Prevention and Action Plan ([2013]37 of the State Council), and Notice of the General Office of the State Council on Forwarding the Execution Plan of the National Development and Reform Commission on the Notice of the Ministry of Housing and Urban-Rural Development on Green Building Action Plans ([2013]1 of the State Council), rapidly implement green building material, support building energy saving and green building/new urbanization construction needs, fulfill the basic state policy of resource conservation and environmental protection. Accelerate transforming urban and rural construction model and construction industry development methods, improve demand structure, nurture new industry, accelerate building material industry transform upgrading, promote the positive interaction between industrialization and urbanization. Ministry of Housing and Urban-Rural Development, the Ministry of Industry and Information Technology establish Green Building Material Certificate Management Measures. It has 5 chapters and in total 22 articles:

Chapter One: General Provisions

Article 1 To Accelerate the promotion of green building material, regulate green building material certificate management and further support green building development, this Law is formulated.

Article 2 For the purposes of this Law, "green building " means the building material products that could reduce natural resource consumption and reduce ecological environmental impacts in its life cycle, and has the features of "energy saving, emission reduction, safe, convenient and recyclable".

Article 3 For the purposes of this Law, "green building material evaluation certificate" (certificate) means according to green building material evaluation technology requirement, on the basis of procedure and requirements of this Law, to evaluate building material products that applied for evaluation, establish its level and give informative certificate.

Certificate includes certification and label and are traceable. The style and format of certificate are jointly formulated by the Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology

Certification has the following information:

- (1) Applicant enterprise name/address;
- (2) Product name, product series, Specification/model
- (3) Evaluation basis
- (4) Green Building Material Level
- (5) Issued date and expiration date
- (6) Issued facility

- (7) Green building material evaluation facility
- (8) Certification number
- (9) Other content to be marked

Article 4 Each category of building material products are formulated with green building evaluation technology requirement according to material content and usage feature.

Certificate level is ranked from 1 star to 3 star according to technology requirement and evaluation result.

Article 5 Evaluation certificate work follows the principle of enterprises voluntariness, stick to scientific, transparent, fair and just.

Article 6 Encourage enterprises to develop, produce, promote and apply green building material. Encourage new constructed, reconstructed, construction extension projects to preferentially use green building material that has evaluation certificate. Green building, green ecological urban area, government invested and financial invested construction projects should use green building material that has evaluation certificate.

Chapter Two: Organization Management

Article 7 The Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology are responsible for monitoring and management of national green building material evaluation certificate. Guide locals to carry out green building material evaluation certificate work. Responsible for formulating implementation by-laws and management measures for green building material evaluation institution. Formulate green building material evaluation technology requirement, establish a national integrated information distributing platform for green building certificate. Dynamically issue and manage all-star products evaluation result and certificate product catalogue.

Article 8 The Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology are responsible for the management of three-star green building material evaluation certificate. Provincial-level competent departments of housing and urban-rural development and departments of Industry and Information Technology are responsible for local one-star and two-star certificate management, publish product evaluation results and certificate product catalogue in the national integrated information distribution platform. Provincial-level competent departments could formulate local management measures or implementation by-laws based on this Law.

Article 9 Based on this Law and relative technology requirement, green building material evaluation institution is responsible for green building material evaluation certificate, including accept enterprises application, evaluate, public and affirm levels, issue certification and label.
Chapter Three: Application and Evaluation

Article 10 Green building material evaluation certificate application is handed from production enterprises to corresponding evaluation facilities.

Article 11 Enterprises can apply for corresponding star certificate based on product features and evaluation technology requirement

Article 12 Green building material certificate applicant enterprises should meet the following conditions:

(1) With Independent Legal Qualification;

(2) With production capacity and intellectual property matching application;

(3) Meet the industry entry criteria;

(4) With complete quality management, environment management and occupational health and safety management system;

(5) Applicant building material products meet the technology requirement of green building material, and has practical application in green construction;

(6) Other required condition

Article 13 Applicant enterprises should provide authentic and complete application material, provide evaluation declaration, provide relevant certification, inspection reports, usage reports and image records, etc.

Article 14 Based on this Law and technology requirement of each material category, green building evaluation institution evaluates independently, when necessary also conduct site inspection and product spot check.

Article 15 Evaluation results are published by green building material evaluation institution, formulate certificate level based on the published results, issue certification and label, meanwhile file to competent departments and published on information platform.

Certificate validity is 3 years. Could apply for extension re-evaluation 6 months before expiration.

Article 16 Certificated enterprises could use it on green building material product packaging and publicity.

Chapter 4: Supervision and Inspection

Article 17 Certificated enterprises should establish certificate usage management system, regulate on certification and label usage, ensure the products in compliance with certificate.

Article 18 Certificate cannot be transferred, forged or fake.

Article 19 Objection to evaluation process or results can be appealed to competent departments, competent departments should investigate and handle in time.

Article 20 Having one of the following major problems, evaluation institution revokes or competent departments order the institution to revoke the granted certificate, and publish to society via information distribution platform:

(1) Severe events impacting environment or major quality accidents;

(2) Certificate products are spot checked as unqualified by national or provincial/municipal quality inspection or industry and commerce circulation;

(3) Certificate products not in line with sample products provided by enterprise;

(4) Beyond certificate usage scope;

- (5) Obtain certificate with improper means of deceit;
- (6) Other situation should be revoked by law

The revoked certificate enterprises shall not re-apply within 2 years since revocation.

Chapter 5: Supplementary Provisions

Article 21 Evaluation technology requirements of each category of building material product, evaluation institution management, etc. supportive documents are issued by The Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology.

Article 22 This Las is implemented since publish date.

4.2 Action Plan of Promoting Green Building Material Production and Implementation

Ministry of Industry and Information Technology (MIIT) and The Ministry of Housing and Urban-Rural Development (MOHURD) issued *The Action Plan of Promoting Green Building Material Production and Implementation* on 31th August 2015, in order to promote green building material production and implementation, promote building material industry to stable development, adjust structure, reform process and benefit people's livelihood, to better service new urbanization and green building development.

Action goal: by the time 2018 the proportion of green building material should be significantly increased, development quality is evidently improved. The proportion of green building material increases to 20% of industry main business income, with good quality condition and meet green building requirements. Compared to 2015, building industry energy consumption per added-value decreases by 8%, oxynitride and dust emission decreases by 8%; green building material application stably increases. Green building material application in new constructions reaches 30%, 50% in green buildings, 70% in experimental demonstration projects, and 80% in current building reconstruction. To achieve the above goals implement the following actions:

4.2.1 Action of Green Building Material Industry

(1) Thoroughly implement cleaner production. Support the current enterprises to implement technology reform and improve green manufacturing level. Promote the application of common technologies such as building material kiln gas desulfurization, denitration and dedusting, coal purification gasification and building material intelligent manufacturing, resource comprehensive utilization, etc. Preferentially support cleaner production technology reform in building and sanitation ceramics industry. Plate glass industry limits on high sulfur petroleum coke fuel. Guide northern heating region cement enterprises to peak-shifting production during winter heating period, saves energy and reduces emission, reduces smog. Promote new fireproofing material. Fully implement non-chrome fireproofing material, reduce heavy metal

pollution from the source. Develop and promote new fireproofing material and cellular structure efficient heat insulation material that are integrated of structure and function, long lifetime and convenient construction

(2) Enhance comprehensive utilization and develop circular economy. Support the usage of city surrounding existing cement kiln to co-process household garbage, sludge and hazardous wastes. Support the usage of Tailings and industry solid wastes, produce new wall materials and mechanism gravel, etc. Emphasize on construction waste treatment and recycling, enhance building material regeneration technology and development, improve solid waste absorption and product quality.

(3) Promote integrating IT application with industrialization, develop intelligent manufacturing. Guide building material production enterprises to improve informatization and automation level, focusing on promoting intelligent manufacturing and enhance level in cement and building and sanitation ceramic industries. Strengthen e-commerce application, use QR-code and cloud computing to establish a traceable information system for green building material, enhance green building material logistics informationization and supply chain coordinating level. Develop and promote industry robots, implement "robot substitute people" trial in building ceramics, glass and glass fiber industries.

4.2.2 Action of Certification of Green Building Material Evaluation

(4) Carry out green building material evaluation. According to *Green Building Material Certificate Management Measures,* set up green building material evaluation certificate system. Timely introduce detailed implementing rules and evaluation technology requirements for each building material product category. Implement green building material star evaluation, publish green building material product catalogue. Guide building industry and consumers to select material, promote the establishment of national integrated, open and ordered green building material market.

(5) Establish green building material information system. Set up green building material database and information collecting/sharing system. Use "Internet +" information technology to establish green building material public service system, publish information on green building material evaluation certificate and experimental demonstration projects, popularize green building knowledge. Establish green building material selection scheme, open up constructional engineering green building material selection path, and realize the traceability of product quality. Research to establish green building material third party information distribution platform.

(6) Expand the application range of green building material. Centered on green building requirements and building material industry development direction, focus on implementing universal building material, energy saving, land saving, water saving, material saving and green evaluation on material and products of building indoor/outdoor environmental protection. In promoting green building development and implementing green building evaluation work, enhance the relevant requirements on green building material application. In the trial demonstration projects and promotion projects of Ministry of Industry and Information Technology and The

Ministry of Housing and Urban-Rural Development, further clear on the regulation of using green building material.

4.2.3 Action of Performance Promotion of Cement and Relevant Product

(7) Develop high quality and specialized cement. Establish and revise cement product standard, improve product quality standard system, encourage production and usage of high-grade cement, clinker cement. Prioritize in developing and regulating the usage of specialized cement for maritime work, nuclear power, and road projects. Support expanding industry chain, complete concrete additive standard, accelerate industrialization, standardization and greenization of mechanism gravel.

(8) Promote the application of high performance concrete. Encourage the usage of pre-mixing concrete above C35 strength level, promote high content admixture and recycled aggregate application technology, improve high performance concrete application technology level. Research and develop high performance concrete durability design and evaluation technology, extend project service life.

(9) Rapidly develop prefabricated concrete building and modular component. Actively promote mature prefabricated concrete structure system. Optimize and improve current prefabricated concrete structure system such as precast concrete frame, shear wall, and frame-shear wall structure. Improve the general structure for concrete prefabricated modular component, promote industrialized production of composite floor slabs, inside/outside wallboard, stairs and balcony and kitchen/bath decoration, etc. Guide the modular component industry to serialized development, scale production and matching supply.

4.2.4 Action of Popularization of Steel Structure and Wooden Structure Building

(10) Develop steel structure building and metal building material. In public buildings such as culture and sports, education and healthcare, transportation and commercial storage, etc. actively adopt steel structure, develop steel structure residence. Industrial buildings and Infrastructure massively use steel structure. Fully use steel structure in long-span industrial buildings. Promote light-steel structure rural housing. Encourage production and usage of light aluminium alloy module and colored Aluminum plate

(11) Develop wooden structure building. Promote the usage of wooden structure buildings in cities and towns, promote usage in government invested new public low-rise buildings such as school, kindergarten, nursing home and landscape architecture, etc. and city flat slope changes. Promote delta wood-steel, wood-concrete mixing structure buildings, mainly promote wooden structure buildings in regions characterized by wooden structure buildings and tourist resort. Promote wooden structure rural housing construction in self-built housing and new rural residential area in economically developed regions.

(12) Develop biomass building material. Promote wood processing and protect industry development, support using crops straw, bamboo fiber and wood chips to develop biomass building material. Prioritize in developing and using biomass fiber strengthened WPC, new Magnesium building material, etc. as envelope and decoration products. Encourage to develop bamboo building material and bamboo structure buildings in areas with abundant bamboo resource.

4.2.5 Action of Popularization of Plate Glass and Energy-saving Doors and Windows

(13) Promote energy saving doors and windows. Implement building efficiency enhancement projects, build high star green building, and develop super low energy consumption, near zero energy consumption buildings. Newly built public buildings, green buildings and existing building energy saving reform should adopt low-emissivity coated glass, vacuum (Insulating) glass, bridge-cutoff aluminum alloy, etc. energy saving doors and windows, drive the production line update and reform of plate glass and aluminum profile.

(14)Strictly use safety glass. Enhance safety glass production and usage monitor and inspection, timely adjust *Regulations on Building Safety Glass Management*, truly regulate building safety glass production, circulate, design, usage and installation management, prevent shoddy, eliminate potential safety hazard in glass doors/windows and curtain wall.

(15) Develop new and deep processing glass products, encourage the integration of Solar Thermal, Photovoltaic and building fabrication, drive Photovoltaic-thermal glass industry development. Support the development of new products such as electronic information used screen glass placode, fireproofing glass, car and high-speed rail used windscreen glass, etc. Improve deep processing level and product added value.

4.2.6 Action of Innovation of Material of Building Wall and Insulation

(16) New wall material innovation. Prioritize in developing safe, energy saving, environmental production, lightweight and high strength walls and roofing material, guide the usage of renewable resources to build new wall materials. Promote premixed mortar, develop and promote wall materials for steel structure Prefabricated buildings.

(17) Develop high efficiency energy saving thermal insulation material. Encourage the development of outside wall thermal insulation materials that are heat preservation, thermal insulation, good fireproof performance, convenient construction and long service life. Develop and promote structure and heat preservation decoration integrated outside wall panel.

4.2.7 Action of Upgrade of Ceramic and Chemical Building Material Consumption

(18) Promote ceramics splits and water saving sanitary fittings. Promote the usage of large, thin-type ultrasonic ceramics tile, water saving and light toilet (urinal). Develop intelligent sanitary ware such as new Faucet and toilet lid, etc. Promote sanitary ceramics humanized and intellectualized production, to better satisfy personalized consumption. Develop city road construction materials such as water permeable brick, support sponge city construction.

(19) Improve ubular product and sectional material quality. Promote usage of new ubular product and sectional material that are corrosion resistant, leak-proof, thermal insulation and energy saving. Increase service life and durability. Support the production and promotion of High Polymer Material has Large diameter, corrosion resistance, long service life, little leakage and maintenance free, or composite ubular product and pipe fitting. Support underground pipeline construction.

(20) Promote environmental friendly coating material, water proof and sealed material. Support the development of low volatile organic compounds (VOC) water-borne building coatings, building adhesive, promote using High Polymer Material, sealing material and heat-mirror films that are corrosion resistance, aging resistance, long service life, convenient construction.

4.2.8 Action of Popularization of Green Building Material in Rural Area

(21)Support green rural housing construction. Combining with new rural construction and green rural housing construction needs, implement *Notice on Implementing Green Rural Housing Construction,* guide to adjust measures according to local conditions and apply green building material, formulate green rural housing material catalogue, primarily promote using energy saving doors/windows, light insulation block, prefabricated components/parts green building material, reinforce green rural housing disaster prevention and reduction ability.

(22) Support modern infrastructure agricultural development. Surround modern infrastructure agriculture, actively develop and promote safe, cost-effective and convenient to use glass and rock wool.

4.2.9 Action of Establishment of Pilot Programs

(23) Project application demonstration. Formulate green building material pilot demonstration declaration, evaluation and acceptance measures. Combining green building, affordable housing construction, green ecology cities, current building energy saving reform, green rural housing and building industry modernization, etc., clarify green building material application relevant requirements. Select typical cities and construction projects, deploy building applied green material pilot demonstration of steel structure, wooden structure, fabricated concrete structure, etc.

(24) Industrial park demonstration. In areas with good green building material development foundation, reply on advantage enterprises, integrate factor resources, improve research design, inspection and testify, modern logistics, e-commerce, etc. public service system, support the building of industry parks characterized by green building material.

(25) Co-processing demonstration. According to *Opinions on Promoting Production Process Co-processing Resource Treatment of Municipal and Industrial Wastes*, continuously deploy pilot demonstration of cement kiln co-processing municipal household garbage and wastes. Deploy demonstration on solid wastes regenerated building materials utilization, establish long-term monitor scheme for regeneration material projects, and accumulate technological information of regeneration material application safety.

4.2.10 Action of Enhancement of Organization and Implementation

(26) Reinforce organization leadership. Establish a green building material production and application coordination mechanism lead by The Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology, participated with relevant departments. Enhance the internal connection between green building material production application and green building development, green city construction. Coordinate green building material production, usage, standard and evaluation, reinforce policy connection, enhance department linkage, organize relevant actions implementation, monitor implementing major tasks, coordinate and complement promotion measures.

(27) Formulate matching policies. Use the current channels to guide social capital, enlarge investment in Generic key technology, and encourage the enterprises to deploy green building material production and application technology innovation. Formulate finance and tax, price related policies, encourage cement kiln to co-process, energy saving glass doors/windows, water saving sanitary fittings, ceramics thin tiles, new wall materials, etc. green building production and consumption. Support the areas with suitable conditions to set up green building material development special fund, give loan with discounted interest to enterprises using or producing green building material. Include green building material certificate information into information selection system of government procurement, bidding, financing and credit granting sections. Formulate building material going to countryside special fiscal subsidy and preferential added-value tax to steel structure component production enterprises.

(28) Improve standard regulation. Further adjust and improve industry standard and entry criteria, publish enterprises and production lines comply with regulations. Reinforce environmental protection, energy consumption, and quality and safety constraint standards, establish a standard system with compulsory standards combining voluntary standards. Enhance the linkage between construction projects design regulation and green building material product standards. Eliminate composite cement 32.5 level standard, primarily promote special cement application.

(29) Set up innovation platform. Depend on large enterprise group, Research institutes and universities and colleges, etc., set up and improve production and research combined industry development innovation system. Establish technology center, engineering center or Key Laboratory features by green building material, improve industry development required public research, technology transform, inspection and certificate platform. Enhance building material production and building design, engineering construction, etc. upper and downstream enterprises interaction. Set up green building industry development alliance. Depend on tailings, building wastes, etc. resources to build new wall material and mechanism gravel production base.

(30) Deploy publicity education and inspection. Extend training intensity, deploy green building material production and application training. Carry out various green building material publicity activities, enhance public green production and consumption concept, enhance understanding and participation to green building material policies, so that the production and application of green building material become a voluntary action for the whole industry and all society parties. Carry out green building material action inspection, for those who do not implement green building material production or relevant regulations, reinforce supervision by public opinion and public criticism.

4.3 Implementation Guidelines of Green Building Material Certificates and Technical Guidelines of evaluation of Green Building Material

To implement requirements of *Green Building Action Plans* and *Action Plan for Promoting Green Building Material Production and Application,* promote green building and building material industry transform and upgrade, promote new urbanization, properly implement *Green Building Material Certificate Management Measures,* on 14th October, MIIT and MOHURD jointly issued *Implementation Guidelines of Green Building Material Certificates* and *Technical Guidelines of evaluation of Green Building Material (trial issue)(first edition).* The implementation guideline has 7 chapters, in total 35 articles; technical guideline introduces evaluation technical requirements of 7 product categories: masonry materials, insulation material, premixing concrete, building energy saving glass, ceramic tile, sanitary ceramics, premixing mortar.

4.3.1 Implementation Guidelines of Green Building Material Certificates

Chapter One: General Provisions

Article 1 To properly implement *Green Building Material Certificate Management Measures,* put into practice the *Green Building Action Plan,* promote green building and building material industry reform upgrade, promote new urbanization, according to relevant requirements of *Energy Conservation Law of the People's Republic of China* and *Regulation on Energy Conservation in Civil Buildings,* formulate this guideline.

Article 2 This guideline regulates on green building evaluation certificate work ("work") organization management, committee of experts, evaluation institution application and publish, certificate application, evaluation and usage, supervision management.

Article 3 Green building material evaluation certificate is about green building needs and building material industry development direction, including general building material, land saving and outdoor environment, energy saving and resource utilization, water saving and water resource utilization, material saving and material utilization, environmental protection and indoor environment, operation maintenance, etc. material and product.

Article 4 Green building material evaluation technology requirements and process are national united, certificate is national general, publish in national green building material certificate management information platform ("information platform").

Article 5 Green building material evaluation institution, experts and relevant staff are life responsible for evaluation results and certificate.

Chapter 2: Organization Management

Article 6 Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology ("two Ministries") set up "green building material evaluation certificate management office" ("two Ministries management office"). The two Ministries management office has the following function and responsibility:

(1) Organize the formulation of green building material evaluation technical requirements;

(2) Certificate formulation, unify coding and usage management;

(3) Establish and maintain national green building material certificate management information platform;

(4) 3-star evaluation institution: application acceptance, evaluation organization and supervision management; 1 and 2-star evaluation institution: filing;

(5) Guide local green building material evaluation certificate work;

(6) Accept green building material evaluation certificate Inquiry, complain, Report, check and treatment;

(7) Undertake expert committee activities;

(8) Other events mandated by two Ministries.

Article 7 Ministry of Housing and Urban-Rural Development and the Ministry of Industry and Information Technology of province, autonomous region and Direct-controlled municipality ("provincial Ministries"), are responsible for local green building material evaluation certificate work. Responsibilities are:

(1) Organize provincial green building evaluation certificate management office ("provincial management office");

(2) Recommend 3 star evaluation institution, approve 1 and 2 star evaluation institution, publish after filing to two Ministries management office;

(3) Coordinate and supervise of local or outside local green building material evaluation certificate application;

(4) Publish local green building material evaluation certificate on information platform;

Chapter 3: Expert Committee

Article 8 National green building evaluation certificate expert committee ("expert committee") is set up by two Ministries. Expert committee has the following responsibilities:

(1) Provide technical consulting and support;

(2) Inspect 3 star green building material evaluation institution;

- (3) Inspect green building material evaluation technical requirement;
- (4) Other relevant work

Article 9 Expert committee is composed of experts from building and building material, with 1 chairman, 2-3 vice chairman. Committee members have 3 years of tenure, could serve consecutive terms. Committee members should meet the following conditions:

(1) Have senior technical title or engage in this professional field for a long time, have abundant theoretical knowledge and practical experience, have certain academic influence in area of expertise;

(2)Familiar with building or building material industry development status and domestic/foreign trends, know well about relevant policy, legislation, regulation and standard;

(3) Published relevant monograph, scientific paper, hosted relevant national or industrial standard formulation or national science projects;

(4) Have sound scientific morality, serious and rigorous working ethic, act with justice and take responsibilities;

(5) Healthy, generally below 70.

Article 10 Expert committee members are hired in the following process:

(1) Recommended by work institution or individual, willingness, fill in Green Building Material Evaluation Certificate Expert Committee Expert Registration Form, and provide relevant evidentiary material, file to two Ministries for inspection after work institution agrees;

(2) Passing inspection will be granted with *Green Building Evaluation Certificate Expert Certification*

Article 11 Provincial departments can formulate provincial expert committee taking this reference.

Chapter 4: Evaluation Institution Application and Publish

Article 12 Evaluation institution should meet the following conditions:

(1) Evaluation work needs professional staff, 1 and 2 star institution should have at least 10 staffs, 3 star institution at least 30. In which medium and above professional title staff accounts for at least 60%, senior professional title staff accounts for at least 30%;

(2) Independent legal personality, have authority, influence and relevant work experience in the industry;

(3) Evaluation institution staff should in compliance with national law and regulation, familiar with policy and standard regulation, and green building material evaluation technical requirement;

(4) Office condition suitable for carrying out the evaluation work;

(5) National level certificated or above provincial level Ministry of Housing and Urban-Rural Development and Ministry of Industry and Information Technology certificated;

(6) Other required conditions

Article 13 Evaluation institution application should file *Green Building Material Evaluation Institution Application Form*

The application form should enclose relevant material copies, such as Legal person qualification certificate, relevant inspection, certificate qualification certification and attachments, letter of entrustment from above provincial level departments

Article 14 Local application for 3 star institution, after pre-audit by provincial management office and filed to two Ministries management office.

Central enterprises and national industry association applying for 3 star evaluation institution, file directly to 2 Ministries management office, meanwhile copy to provincial management office.

Article 15 Evaluation institution inspection adopts material inspection combining site inspection, mainly inspect:

- (1) Applicant unit qualification and competency
- (2) Personnel allocation and professional proficiency
- (3) Relevant evaluation, inspection certificate and work performance
- (4) Work and results in green building material

Article 16 Public those passed the inspection, publicity period is no less than 10 working days. Without objection, two Ministries inspect and publish by management office on the information distribution platform.

Article 17 Evaluation institution validity period is 5 years, 60days before expiry date could apply for extension.

Chapter 5: Certificate Application, Evaluation and Usage

Article 18 Certificate application is filed by building material production enterprise to corresponding evaluation institution. Based on evaluation technical requirements, the production enterprise could apply for corresponding star evaluation and certificate to evaluation institution of equivalent level.

The same product of the enterprise could not file the same star level application to multiple evaluation institution.

Article 19 Certificate applicant enterprise should fill in the *Green Building Material Evaluation Certificate Declaration*, provide relevant technical data and evidentiary material according to evaluation technical requirements, and be responsible for the authenticity.

Article 20 After evaluation institution receives enterprise application, must finish formal examination within 5 working days. Those who passes the formal examination, evaluation institution issues notice of acceptance to the applicant enterprise and sign technical service contract, discussing both parties' rights, duties and service costs, etc. Service costs are charged on commonweal and non-profit principle, including site check and inspection, validity check and quality guarantee, etc.

Those who fails the formal examination, should be informed at once about providing additional documents.

Article 21 Evaluation technical requires to set up control item, grading item and bonus item. Control item is mandatory requirements on product performance, environmental impact and Safety and health. Total score is the sum of grading item and bonus item, grading item has a total 100 points, bonus item 5 points.

Article 22 Certificate level is classified according to this table:

Level	*	**	***
Score	60-69	70-84	

Article 23 Evaluation should be finished within 30 working days (excluding sampling retest time)

Enterprises that pass the inspection will be published in information platform for 10 days. Without objection, evaluation institution applies for certification and certificate serial number from two Ministries management office, issue the certification and publish on information platform; With objection, corresponding management office organizes the re-inspection.

Enterprises that fail the evaluation, if having objection to the evaluation results should be filed within 10 days to the corresponding management office.

Article 24 Enterprises that obtain green building material evaluation certificate, should add a note, print or mold the green building material label on its products or minimum sales package.

Article 25 Certificated enterprises should establish certificate usage management scheme, regulates certification and label usage, ensure that products are in line with certification. Record and archive certification/label usage.

Article 26 Certification validity is 3 years, within validity the enterprises should file usage report to evaluation institution before end of December of each year. 6 months before expiry date could apply for extension to evaluation institution, the extension re-inspection process is the same as new application.

Article 27 If the certificated enterprises encounter major business activities change, should timely report to evaluation institution. Having one of the following major changes, should re-apply for evaluation:

(1) Enterprise production equipment, technology have major changes and significantly influence product performance;

(2) Production sites change;

(3) Product standard updates and influence product inspection result.

Chapter 6: Monitoring Management

Article 28 Evaluation institution files annual working report to corresponding management office. Report includes: evaluation overview, statistics on issued certificate, evaluation performance analysis, institution and personnel performance, existing difficulties, problems and suggestions, and other explained situation.

Article 29 Two Ministries management office, provincial management office should spot check and inspect corresponding evaluation institution, and reports the results to competent departments.

Article 30 Having one of the following situation, cancel the evaluation institution for its qualification:

(1) Provide false document and information during evaluation process and lead to untruthful evaluation result;

- (2) Issue false evaluation report;
- (3) Unable to ensure evaluation quality;
- (4) Other situation that should be disqualified.

Article 31 Disqualified evaluation institution is not allowed to re-apply.

Article 32 Certificated enterprises have one of the following major problems, evaluation institution should revoke or ordered by competent department to revoke the issued certificate, and publish to the society via information platform:

- (1) Have vicious events impacting environment and major quality problems;
- (2) Certificated products fail in spot-check;
- (3) Use certification beyond usage range;
- (4) Obtain certification by improper means of deceive;
- (5) Other situation should be revoked by law.

Article 33 Revoked enterprises cannot re-apply within 2 years.

Article 34 Two Ministries management office and provincial management office staff plays favoritism, abuse of power, misconduct or interfere evaluation which lead to improper evaluation result, will be given disciplinary punishment according to regulation; when constitutes a crime shall be transferred to the department of justice and subject to criminal liabilities.

Article 35 Any enterprise or individual could file for appeal or report to two Ministries, provincial departments, two Ministries management office or provincial management office, if having any objection to evaluation results.

Chapter 7: Supplementary Provisions

Article 36 Two Ministries management office will separately issue expert registration form and certification, evaluation institution application form, certificate declaration, certificate style and format.

Article 37 Provincial departments could formulate local implementation guidelines based on *Green Building Material Certificate Management Measures* and this Guideline.

Article 38 This Guideline is implemented since issued date.

4.3.2 Technical Guidelines of evaluation of Green Building Material

Chapter 1: General Provisions

(1) This Guideline is formulated to scientifically guide and regulate the management of green building material evaluation certificate, accelerate green building material promoted application and promote green building development.

(2)The first edition of the Guideline formulates evaluation technical requirement on 7 building material product categories: masonry material, insulation material, premixed concrete, building energy saving glass, ceramics tile, sanitary ceramics, and premixed mortar. It is used for green building material evaluation of the 7 categories of product.

Further on will gradually expand the evaluation technical requirement to other categories of building material product, constantly adjust and improve.

(3) While green building material evaluation is in line with this Guideline requirements and local features, it should also in line with national laws, regulations and standards.

Chapter 2: Definition

(1) Green building- In its full service life saves resource (energy, land, water and material) to the largest extent, protect environment, reduce pollution, provide healthy, suitable and efficient usage space for people, harmonious coexistence with natural.

(2)Green building material- In its full service life could reduce natural resource consumption and ecological environment impact, has the features of "energy saving, emission reducing, safe, convenient and recyclable".

(3)Heat insulating material- Building material and product used to improve building envelope heat insulation properties, including organic heat insulation and inorganic heat insulation building material.

(4)Masonry material- Solid (hollow) or square hexahedron bulk building material and product made by sintering or non-sintering production process, including all masonry material except compound masonry.

(5)Premixed concrete- Composed of cement, aggregate, water and needed additive and mineral admixtures according to a certain proportion, produced in mixing station (building), delivered to usage site by transportation device as mixture building material, including regular product and specialty product.

(6)Building energy-saving glass- Regular plate glass after deep processing, used in transparent building envelope, including heat-absorbing glass, heat reflecting glass, low emissivity glass, hollow glass and vacuum glass, etc.

(7)Ceramic tile- Solid or hollow plate building ceramics product made of clay and other non-organic metal material, using forming and high-temperature sintering production process. Including building ceramic tile, ceramic plate and porcelain plate, etc.

(8)Sanitary pottery- Ceramic product used in sanitary ware, made of clay and other inorganic materials with mixing, forming and high-temperature sintering process.

(9)Premixed mortar- Composed of cement, sand, water, coal ash and other mineral mixtures, together with water-retentive and plastic material, additive as needed, according to a certain proportion, measured and mixed at central mixing station (plant), delivered to usage site by mixing carrier, put into special storage vessel, and used up within regulated time, including regular mortar, special mortar and plater mortar, etc.

Chapter 3: Terms

(1)Waste water- During premixed concrete production process, recyclable turbid liquid composed of cement, coal ash, mineral powder, additive and sand, etc. generated from washing production equipment and transportation equipment.

(2)Effluent- All the unrecyclable water generated from production and life activities of premixed concrete enterprises.

(3)Scrapped concrete- Collected from premixed concrete production, transportation and inspection process, residue concrete mixture and hardened specimen which cannot be used to reduce design level after direct modulation.

(4)Light to solar gain ratio- Ratio of glass visible light transmittance to total solar energy transmittance

(5)General color rendering index- The average of color rendering indexes of the 1-8th standard color samples according to International Commission on Illumination (CIE)

(6)Low quality raw material- Contain high proportion of ancient colored element of iron, Titanium and manganese. And all industrial tailings, waste residue and waste material, etc. used as ceramics production raw material

(7)Ash material- In phases of premixing mortar, collected from dusting and cleaning.

(8) Environmental product declaration (EPD- Environmental declaration providing quantitive environment data based on default parameter.

(9)Energy consumption per unit product- Energy consumption from producing unit of product in the calculation period, converts standard coal.

(10)Carbon emission per unit product- The greenhouse gases discharged of producing unit of product, converts to carbon dioxide.

(11)Carbon footprint- Used to quantify greenhouse gas emission coefficient during process, process system or product system, to show their contribution to climate change.

Chapter 4: General Regulation

(1) Evaluation index system contains control item, grading item and bonus item. Participated products and enterprises must fully satisfy control item requirements. Grading item has total 100 points, bonus item 5 points. Total score is calculated as: $Q \equiv Q = Q = Q = 0$

 $\mathbf{Q} \stackrel{\text{\tiny{(i)}}}{=} \mathbf{Q} \stackrel{\text{\tiny{(i)}}}{=} \mathbf{\Sigma} \stackrel{\text{\tiny{(i)}}}{=} \mathbf{Q}_{i}$

In which:

Q .a─total score;

Q im-grading item score;

Q m—bonus item score;

w_i ograding item all indexes weights;

Q_i rGrading item all indexes scores

(2) Control item mainly includes requirements on air pollutants, sewage, noise emission, workplace environment, safety production and management system. Grading item evaluates building material product lifecycle from 5 aspect: energy saving, emission reducing, safety, convenience and recyclability. Bonus item mainly considers building material production technology and advancement of equipment, environmental impact level, technical innovation and performance, etc.

(3) Grading item index energy saving is requirements on unit product energy consumption, raw material transportation energy consumption, management system; emission reducing is requirements on production plant pollutants emission, product certificate or EPD, carbon footprint, etc.; safety is indexes influencing safety

production standardization and product performance; convenience is requirements on construction performance, applicability and economical efficiency of applicant area; recyclability is indexes of waste recycling and utilization performance during production and usage process.

(4) Control item has yes/no as evaluation result; grading item has yes/no score obtained as result.

(5) Green building material level is decided by evaluation total score, from low to high three levels $\star, \star \star$ and $\star \star \star$. Level classification is shown in Table 60:

Table 60: Classification of Green Building Material

Level	*	**	***
Score	60-69	70-84	85amd above

Chapter 5: Masonry Material

(1) Control item

Production enterprises should fulfill Table 61 requirements, and cannot use plough clay as main raw material.

Project Requirement	Article
Air pollutant emission	Air Pollutant Comprehensive Emission Standards GB 16297,
	level 3; or achieve local emission lowest standard
Sewage emission	Sewage Comprehensive Emission Standards GB 8978
Noise emission	Boundary Noise Emission Standard for Industrial Enterprises
	GB 12348
Workplace environment	Occupational Contact Limit Value of Chemical Harmful
	Factors in Workplace GBZ 2.1
	Occupational Contact Limit Value of Physical Harmful
	Factors in Workplace GBZ 2.2
Safety production	Enterprise Safety Production Standardized Regulation AQ/T
	9006, level 3
Management system	Complete quality, environment and occupational
	health&safety management system
Note: air pollutant, sewage and	nose mission should in compliance with environmental

Table 61: Basic Requirement of Production

Have detailed and feasible applicant technical document

impact evaluation acceptance and approval requirement

Basic performance should meet current national and industrial standard requirements Radioactivity should meet *Building Material Radionuclide Limit Value* GB 6566 requirements

(2) Grading Item

Grading item all index weights is shown in Table 62.

Index	Weight	Article	Weight
_		1) Energy consumption or carbon emission per unit product production	0.10
Energy	0.23	2) Raw material transportation energy consumption	0.05
Saving		3) Fresh water consumption per unit product	0.05
		4) Energy management system certificate	0.03
Emission		5) Plant air pollutant and sewage emission	0.05
reducing 0	0.10	6) Product certificate or evaluation, EPD, carbon footprint report	0.05
	0.32	7) Safety production standardization level	0.02
Sofoty		8) Coefficient of drying shrinkage and absorptivity	0.10
Salely		9) Frost Resistance	0.10
		10) Compressive strength, block density	0.10
Convoni		11) Easily construction	0.05
ence	0.20	12) Size accuracy	0.05
		13)Applicability and economical efficiency	0.10
Recyclabi	0.15	14) Recycle and reuse	0.05
-lity	0.15	15) Wastes utilization	0.10

Table 62: Grading index weights

I Energy saving

1) Unit product energy consumption is rated according to Table 63

0-1	Rating rules		
Category	60 points	100 points	
Aerated	$18 \text{ kgcs/m}^3 \leq \text{E}820 \text{ kgcs/m}^3$	E^{20} kaco/m ³	
concrete			
Sand lime brick	17 kgce/m ³ <e718.4 kgce="" m<sup="">3</e718.4>	E718.kgce/m ³	
Sintering	Comply with GB 30526 acceptance	Comply with GB 30526 advanced	
products	value requirement	value requirement	
Comont product	Consistently improve or file carbon emission report for three consecutive		
Cement product	years, graded by experts		

Table 63: Rating Rules of Energy Consumption per Product

2) Raw material transportation energy consumption score is the sum of the following two items, with total score no more than 100.

Raw material has accumulated transportation radius no more than 200km, weight ration no less than 60% but under 70%, gives 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points;

Raw material using railway/ship transportation over 200km, weight proportion no less than 70% but under 80%, 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

3) Unit product fresh water consumption rating rule:

<400kg /m³, >350kg /m³, 20 points; <350kg /m³, >300kg /m³, 40 points; <300kg /m³, >200kg /m³, 60 points; <200kg /m³, >100kg /m³, 80 points; <100kg /m³, 100 points

4) Pass GB/T 23331 energy management system certificate, 100 points.

II Emission Reduction

5) Plant air pollutant and sewage mission score is the sum of the following two items: Comply with *Air Pollutant Comprehensive Emission Standards* GB 16297 Table 2 regulated level two or local emission standard highest requirement, 50 points; Comply with *Sewage Comprehensive Emission Standard* GB 8978 regulated level one, 50 points.

6) Pass product certificate or evaluation, submit EPD and carbon footprint report. Total score is the sum of the following items:

Pass product certificate or evaluation, total 40 points, rated by experts Submit EPD report, total 30 points, rated by experts

Submit product carbon footprint report, total 30 points, rated by experts.

III Safety

7) Safety production standardization level complies with *Enterprise Safety Production Standardized Regulation* AQ/T 9006 regulated level 2, 80 points; complies with level 1, 100 points.

8) Drying shrinkage index of nonsintered masonry material and water absorption index of sintered masonry material are rated as Table 64:

Table 64: Rating Table of Drying Shrinkage Index of Non-Sintered Type Masonry Materials and Water Absorption Rate of Sintering Class Masonry Materials

Drying shrinkage index of nonsintered masonry material	Water absorption index of sintered masonry material	Points
<0.70mm/m and >0.60mm/m	<25% and >20%	60 points
<0.60mm/m and >0.40mm/m	<20% and >15%	80points
<0.40mm/m	<15%	100points

9) Freezing resistance index (based on product standard for freezing and thawing test) grading rules:

Project	Requirement	Points		
		Sintered	Non sintered	
Compressive	<15% and >10%	30 points	—	
strength loss	<10% and >5%	40 points		

Table 65: Rating Table of Frost Resistance Index Requirement

ratio	<5%	50 points	_	
Qualification loss rate	<4.5% and >3%	30 points	60 points	
	<3% and >2%	40 points	80 points	
	<2%	50 points	100 points	
Note: sintered products freezing resistance is determined by appearance as regulated in				
the standard, give 100 points for meeting requirement.				

10) Compressive strength and nonbearing product bulk density is rated according to Table 66.

Project	Poquiromont	Points		
Project	Keyunement	Bearing	Nonbearing	
Ratio of actual measured strength and design strength	>1.0 and <1.05	40 points	20 points	
	>1.05 and <1.10	60 points	30 points	
	>1.10 and <1.15	80 points	40 points	
	>1.15	100 points	50 points	
Ratio of design density and actual measured density	>1.0 and <1.05	—	20 points	
	>1.05 and <1.10	—	30 points	
	>1.10 and <1.15	—	40 points	
	>1.15		50 points	

Table 66: Rating Table of Compressive Strength and Bulk Density

IV Convenience

11) Construction evaluation is the sum of the following two items:

Standardized design, meet building module requirement, total points 50, rated by experts;

Customize and prefabricate based on building required size, reduce site cutting, total points 50, rated by experts.

12) Size deviation lower than corresponding product standard required allowable deviation more than 25%, 100 points.

13) Applicability and economical efficiency is the sum of the following two:

Matching the applied region economic development level, environment, industry association, total 50 points, rated by experts;

Matching the applied region laws and regulation, standard regulation, total 50 points, rated by experts.

V Recyclability

14) Recycling and reuse rating rules are:

Recyclable, but need complex demolition, recycle and processing, 30 points; Recyclable, only need simple demolition, recycle and processing, 60 points; Recyclable after disassembly, simple and convenient, do not need second processing, 100 points.

15) Wastes utilization rating rules are:

>30% and <40%, 40 points;

>40% and <50%, 60 points; >50% and <60%, 80 points; >60% and <80%, 90 points; >80%, 100 points

Chapter 6: Insulation Material

(1) Control item

Production enterprises should meet requirements in Table 67

Project	Requirement
	Air Pollutant Comprehensive Emission Standards GB
Air pollutant emission	16297, level 3
	or meet local emission lowest standard requirement
Sewage emission	Sewage Comprehensive Emission Standard GB 8978
Noice emission	Boundary Noise Emission Standard for Industrial
	Enterprises GB 12348
	Occupational Contact Limit Value of Chemical Harmful
Markalago onvironment	Factors in Workplace GBZ 2.1
	Occupational Contact Limit Value of Physical Harmful
	Factors in Workplace GBZ 2.2
Sofety production	Enterprise Safety Production Standardized Regulation
	AQ/T 9006, level 3
Management system	Complete quality, environment, occupational health and
wanagement system	safety management system
Note: air pollutant, sewage and	noise emission should meet environmental impact evaluation

Table 67: Basic Requirement of Production

Note: air pollutant, sewage and noise emission should meet environmental impact evaluation acceptance and approval requirements

Production enterprises should have detailed and feasible application technical document.

Basic performance should meet current national and industrial standard requirements.

Combustion performance should not be lower than national standard *Building Material Consigned Goods Combustion Performance Level* GB8624 required level B₂ Durable, safe and easily repaired using function

(2) Grading item

Scoring item index weights is shown in Table 68

Index	Weights	Article	Weight
Energy 0.34	1) Unit product production energy consumption or carbon emission	0.10	
saving		2) Raw material transportation energy consumption	0.05

Table 68: Value of Indexes

		3) Heat conductivity coefficient	0.16
		4) Energy management system certificate	0.03
		5) Plant air pollutant and sewage emission	0.05
Emission		6) Do not use Chlorofluorocarbons foaming agent and	0.05
Emission	0.15	hexabromocyclododecane fire retardant	0.05
reduction		7) Product certificate or evaluation, EPD, carbon	0.05
		footprint report	0.05
		8) Safety production standardized level	0.02
Safety	0.23	9) Combustion performance	0.15
		10) Structure linkage safety	0.06
Convenien		11) Application property	0.05
Convenien	0.20	12) Construction process environmental impact	0.05
ce		13)Applicability and economical efficiency	0.10
Deevelahili		14) Recycle and reuse	0.03
Recyclabi-li	0.08	15) Nonorganic insulation material solid wastes	0.05
ly		utilization	0.05
Note: weight	of organic ir	sulation material 15) is added to 14)	

I Energy saving

1) Unit product production energy consumption rating rules are:

Rock wool and mineral cotton unit product energy consumption meets *Rockwool and Mineral Cotton and Their Products Unit Product Energy Consumption Limit Value* GB 30183 acceptance value, give 80 points; meets advanced value, give 100 points.

Other insulation material production enterprises consistently improve unit product consumption level or provide unit product carbon emission report for three consecutive years, total 100 points, rated by experts.

2) Raw material transportation consumption score is the sum of the following two, total score is no more than 100 points:

Raw material with accumulated transportation radium less than 500km, weight ratio no less than 60% but under 70%, give 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points;

Raw material over 500km uses railway and shipping transportation weight ratio no less than 79% but under 80%, give 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

2) Thermal conductivity coefficient is rated based on Table 69:

	inernal eenaaeany
Thermal conductivity λ, W/(m·K)	Points
$0.060 < \lambda \leqslant 0.065$	10 points
$0.055 < \lambda \leqslant 0.060$	20 points
$0.050 < \lambda \leqslant 0.055$	30 points
0.045< λ ≤0.050	40 points
0.040< λ ≤0.045	50 points

Table 69: Rating Table of Thermal Conductivity

0.035< λ ≤0.040	60 points
0.030< λ ≤0.035	70 points
0.025< λ ≤0.030	80 points
0.020< λ ≤0.025	90 points
λ ≤0.020	100 points

4) Pass GB/T 23331 energy management system certificate, give 100 points. II Emission reduction

5) Plant air pollutant and sewage emission score is the sum of the following two:

Meet *Air Pollutant Comprehensive Emission Standards* GB 16297 Table 2 regulated level two or local emission standard highest requirement, give 50 points.

Meet Sewage Comprehensive Emission Standard GB 8978 regulated level 1, give 50 points.

6) Do not use Chlorofluorocarbons foaming agent, give 50 points; do not use hexabromocyclododecane fire retardant, give 50 points.

7) Pass product certificate or evaluation, submit EPD and carbon footprint report. Score is the sum of the following items:

Pass product certificate or evaluation, total 40 points, rated by experts

Submit EPD report, total 30 points, rated by experts

Submit product carbon footprint report, total 30 points, rated by experts.

III Safety

8) Safety production standardized level meets *Enterprise Safety Production Standardized Regulation* AQ/T 9006 regulated level 2, give 80 points; meet level 1, give 100 points.

9) Combustion performance is rated based on the highest fireproofing level achieved: Meet level B₁ requirement, give 60 points;

Meet level A requirement, give 100 points

10) Ensure self-strength and structure linkage safety, give 100 points.

IV Convenience

11) Construction score is the sum of the following items:

Insulation material size stability no more than 1% but more than 0.5%, give 20 points; no more than 0.5%, 30 points;

Insulation material modularization design or product size matching equipment, reduce site cutting, total 40 points, rated by experts;

Prefabricated assembly construction or insulation decoration integration construction, total 30 points, rated by experts.

12) Environmental impact rating during construction process is the sum of the following two:

No dust or light dust pollution during construction, total 50 points, rated by experts; No organic solvent pollution during construction process, total 50 points, rated by experts.

13) Applicability and economical efficiency rating is the sum of the following two:

Matching the applied region economic development level, environment, industry association, total 50 points, rated by experts;

Matching the applied region laws and regulation, standard regulation, total 50 points, rated by experts.

V Recyclability

14) Recycling and reuse rating rules are:

Recyclable, but need complex demolition, recycle and processing, 30 points;

Recyclable, only need simple demolition, recycle and processing, 60 points;

Recyclable after disassembly, simple and convenient, do not need second processing, 100 points.

15) Ratio of solid waste weight in product raw material reach 5%, give 30 points; reach 10%, 50 points; reach 15%, 70 points; reach 25%, 100 points.

Chapter 7 Premixed concrete

(1) Control item

Production enterprises should meet requirements in Table 70.

Project	Requirement		
	Air Pollutant Comprehensive Emission Standards GB		
Air pollutant emission	16297, level 3		
	or meet local emission lowest standard requirement		
Sewage emission	Sewage Comprehensive Emission Standard GB 8978		
Noise emission	Boundary Noise Emission Standard for Industrial		
Noise emission	Enterprises GB 12348		
	Occupational Contact Limit Value of Chemical Harmful		
Mortologo opviropment	Factors in Workplace GBZ 2.1		
workplace environment	Occupational Contact Limit Value of Physical Harmful		
	Factors in Workplace GBZ 2.2		
Cofety production	Enterprise Safety Production Standardized Regulation		
Salety production	AQ/T 9006, level 3		
Managament avatam	Complete quality, environment, occupational health and		
Manayement system	safety management system		
Note: Air pollutant, sewage and	noise emission should meet environmental impact evaluation		

Table 70: Basic Requirement of Production

acceptance and approval requirements

1) Enterprise production and management should meet *Premixed Concrete Green Production and Management Technical Regulation* JGJ/T 328 requirements or local premixed green production management regulation.

2) Production enterprises should have detailed and feasible application technical documents.

3) Basic performance should meet current national standard *Premixed Concrete* GB/T 14902 requirements.

2) Grading item

Grading item index weight is shown in Table 71.

Index	Weight	Article	Weight
<u> </u>	0.00	1)Raw material transportation	0.05
		2) Unit product energy consumption or carbon emission	0.06
Energy saving	0.20	3) Strength level	0.10
		4) Energy and measurement management system certificate	0.05
Emision		5) Plant air pollutant and sewage emission	0.05
reduction 0	0.13	6) Product certificate or evaluation, EPD, carbon footprint report	0.08
Safety	0.27	7) Standard deviation	0.10
		8) Impervious level, chloride resistance impervious level, carbonization resistance level, frost resistant level	0.15
		9) Safety production standardization level	0.02
Convenience	ce 0.10	10) Construction performance, self compact concrete	0.05
		11) Applicability and economical efficiency	0.05
		12) Waste concrete generation rate	0.06
Pecyclability	0.00	13) Waste concrete recycling rate	0.06
Recyclability	0.00	14) Solid wastes comprehensive utilization rate	0.06
		15) Industrial waste water recycling rate	0.06

Table 71: Value of Indexes

I Energy saving

1) Raw material transportation consumption rating is the sum of the following two items, but total score is no more than 100 points:

Raw material with accumulated transportation radium less than 200km, weight ratio no less than 60% but under 70%, give 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points.

Raw material over 200km uses railway and shipping transportation weight ratio no less than70% but under 80%, give 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

2)Unit product consumption level or carbon emission consistently improves for 3 consecutive years, total 100 points, rated by experts.

3) Strength level is in line with design strength level, give 100 points.

4) Management system rating is the sum of the following two:

Pass GB/T 23331 energy management system certificate, give 60 points;

Pass GB/T 19022 measurement management system certificate, give 40 points.

II Emission reduction

5) Plant air pollutant and sewage emission score is the sum of the following two: Meet *Air Pollutant Comprehensive Emission Standards* GB 16297 Table 2 regulated level two or local emission standard highest requirement, give 50 points.

Meet Sewage Comprehensive Emission Standard GB 8978 regulated level 1, give 50 points.

6) Pass product certificate or evaluation, submit EPD and carbon footprint report. Score is the sum of the following items:

Pass product certificate or evaluation, total 40 points, rated by experts Submit EPD report, total 30 points, rated by experts

Submit product carbon footprint report, total 30 points, rated by experts.

III Safety

7) For the same mix proportion, 10 consecutive batch of product compressive strength (MPa) standard deviation rating rules are:

Larger than level strength standard deviation upper limit rat for 1.0 time and less than or equal to 1.2 times, give 60 points.

Larger than level strength standard deviation upper limit rat for 0.8 time and less than or equal to 1.0 time, give 80 points.

Less than or equal to level strength standard deviation upper limit omax for 0.8 time give 100 points.

8) Durability rating rules are:

Impermeability level is higher than *Concrete Durability Inspection Evaluation Standard* JGJ/T 193 regulated level P8, give 30 points; level P10, 40 points; level P12, 50 points;

Chloride penetration resistance level meets *Concrete Durability Inspection Evaluation Standard* JGJ/T 193 regulated level II, give 10 points; meets level III, give 20 points; meets level IV and above, give 30 points;

Carbonization resistance level meets *Concrete Durability Inspection Evaluation Standard* JGJ/T 193 regulated level III, give 5 points; meets level IV and above, give 10 points;

Frost resistance level higher than F300, give 5 points; higher than F400, give 10 points.

9) Safety production standardization level meets *Enterprise Safety Production Standardized Regulation* AQ/T 9006regulated level 2, give 80 points; meets level 1, give 100 points.

IV Convenience

10) Premixed concrete reaches self-compact concrete performance, give 100 points.

11) Premixed concrete applicability and economical efficiency rates are the sum of the following two:

Matching the applied region economic development level, environment, industry association, total 50 points, rated by experts;

Matching the applied region laws and regulation, standard regulation, total 50 points, rated by experts.

V Recyclability

12) Waste concrete generation rate rating rules:

>1.0% and <1.5%, give 60 points

>0.5% and <1.0%, give 80 points

<0.5%, give 100 points.

- 13) Waste concrete recycling rate rating rules:
 >50% and <70%, give 60 points;
 >70% and <90%, give 80 points;
 >90%, give 100 points.
- 14) Solid wastes comprehensive utilization rate rating rules:

>30% and <50%, give 60 points;

>50% and <70%, give 80 points;

>70%, give 100 points.

15) Waste water recycling rate reaches 100%, give 100 points.

Chapter 8: Building Energy Saving Glass

(1) Control item

Production enterprises should meet the requirements of Table 72.

Pro	ject	Requirement	
	plata daga	Plate Glass Industry Air Pollutant Emission Standard GB	
Air pollutant	plate glass	26453	
emission	othoro	Air Pollutant Comprehensive Emission Standards GB 16297,	
	others	level 3 or meet local mission standard lowest requirement	
Sewage emission	on	Sewage comprehensive emission standard GB 8978	
Noise emission		Boundary Noise Emission Standard for Industrial Enterprises	
Noise emission		GB 12348	
		Occupational Contact Limit Value of Chemical Harmful	
Workplace envi	ronmont	Factors in Workplace GBZ 2.1	
workplace envir	onment	Occupational Contact Limit Value of Physical Harmful	
		Factors in Workplace GBZ 2.2	
Sofoty productio		Enterprise Safety Production Standardized Regulation AQ/T	
Salety production	ות	9006, level 3	
Managamanta	reterre	Complete quality, environment, occupational health and	
Management sy	Stem	safety management system	
Note: air polluta	nt, sewage and	noise emission should meet environmental impact evaluation	
acceptance and	approval requir	ements	

Table 72: Basic Requirement of Production

Production enterprises should have detailed and reasonable application technical documents.

Basic performance should meet current national and industrial standard requirement.

(2) Grading item

Grading item index weight is shown in Table 73

Index	Weight	Article	Weight	
		1) Unit product energy consumption	0.10	
Energy	0.52	2) Raw material transportation energy consumption	0.10	
saving	0.55	3) Thermal performance	0.30	
		4) Energy management system certificate	0.03	
		5) Cleaner production level	0.05	
reduction 0.15	0.15	6) Product certificate or evaluation, EPD, carbon	0.10	
		footprint report	0.10	
Safety 0.22		7) Safety production standardized level	0.02	
		8) Construction safety performance	0.10	
		9) Visible light reflection rate	0.10	
Convenien		10) General color rendering index	0.05	
се	0.10	11) Applicability and economical efficiency	0.05	

Table 73:	Value of Indexes
-----------	------------------

I Energy saving

1) Energy saving glass unit product consumption is the sum of the following two, total 100 points:

Plate glass unit product consumption meets *Plate Glass Unit Product Energy Consumption Limit Value* GB 21340 regulated limit value, give 40 points; meets advanced value, give 60 points.

Energy saving glass production enterprises unit product consumption level or carbon emission consistently improves for 3 consecutive years, totally 40 points, rated by experts.

2) Raw material transportation consumption rating is the sum of the following two, but total score is no more than 100 points.

Raw material with accumulated transportation radium less than 500km, weight ratio no less than 60% but under 70%, give 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points.

Raw material over 500km uses railway and shipping transportation weight ratio no less than70% but under 80%, give 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

3) Thermal performance is rated as Table 74:

Toblo	71.	Thormol	Dorformonoo	Dating	Duloo
Iable	74.	mennai	renomance	naung	rules

Climatic			Rating Rule	
region	FIOJECI	60 points	80 points	100 points
Bitter cold	U, W/(m²⋅K)	1.2 <u≤1.7< td=""><td>1.0<u≤1.2< td=""><td>1.0U≪</td></u≤1.2<></td></u≤1.7<>	1.0 <u≤1.2< td=""><td>1.0U≪</td></u≤1.2<>	1.0U≪

	Visible light transmittance Tv, %	40≪T	Tv≥60	
	U, W/(m2⋅K)	1.5 <u≤1.8< td=""><td>1.2<u≤1.5< td=""><td>U≤1.2</td></u≤1.5<></td></u≤1.8<>	1.2 <u≤1.5< td=""><td>U≤1.2</td></u≤1.5<>	U≤1.2
Cold	Light-to-solar gain (LSG)	1.2 <lsg≤1.3< td=""><td>LSG>1.3</td></lsg≤1.3<>		LSG>1.3
Hot	U, W/(m2⋅K)	1.7<	J≪2.0	U≤1.7
summer and cold winter	Light-to-solar gain (LSG)	1.3 <lsg≤1.4< td=""><td>LSG</td><td>>1.4</td></lsg≤1.4<>	LSG	>1.4
Hot	U, W/(m2⋅K)	1.8 <l< td=""><td colspan="2"><u≤2.0 1.5<u≤1<="" td=""></u≤2.0></td></l<>	<u≤2.0 1.5<u≤1<="" td=""></u≤2.0>	
summer and warm winter	Light-to-solar gain (LSG)	1.4 <lsg≤1.6< td=""><td>1.6<lsg≤1.9< td=""><td>LSG>1.9</td></lsg≤1.9<></td></lsg≤1.6<>	1.6 <lsg≤1.9< td=""><td>LSG>1.9</td></lsg≤1.9<>	LSG>1.9

4) Pass GB/T 23331 energy management system certificate, give 100 points.

II Emission reduction

5) Production enterprises cleaner production meets current industry standard *Cleaner Production Standard Plate Glass Industry* HJ/T 361 regulation, rating rules are:

Reaching level 2, 60 points;

Reaching level 1, 100 points.

6) Pass product certificate or evaluation, submit EPD and carbon footprint report. Score is the sum of the following items:

Pass product certificate or evaluation, total 40 points, rated by experts Submit EPD report, total 30 points, rated by experts

Submit product carbon footprint report, total 30 points, rated by experts.

III Safety

7) Safety production standardized level meets *Enterprise Safety Production Standardized Regulation* AQ/T 9006 regulated level 2, give 80 points; meet level 1, give 100 points.

8) Safety performance meets *Building Glass Application Technical Regulation* JGJ 113, steel glass at the same time meets *Building Doors/Windows Curtain Wall Usage Steel Glass* JG/T 455 requirement, give 100 points.

9) Visible light reflection rate rating rules:

<0.30 and >0.16, 60 points;

<0.16, 100 points

IV Convenience

- 10) General color rendering index rating rules:
 - >0.80 and <0.90, 60 points

>0.90, 100 points

11) Applicability and economical efficiency rates are the sum of the following two:

Matching the applied region economic development level, environment, industry association, total 50 points, rated by experts;

Matching the applied region laws and regulation, standard regulation, total 50 points, rated by experts.

Chapter 9: Ceramic Tile (1) Control item Production enterprises should meet the requirements in Table 75:

Project	Requirement	
Dollutant Emission	Ceramics Industry Enterprise Pollutant Emission Standards	
	GB 25464	
Noise emission	Boundary Noise Emission Standard for Industrial Enterprises	
	GB 12348	
	Occupational Contact Limit Value of Chemical Harmful	
Workplage environment	Factors in Workplace GBZ 2.1	
workplace environment	Occupational Contact Limit Value of Physical Harmful	
	Factors in Workplace GBZ 2.2	
Cofety production	Enterprise Safety Production Standardized Regulation AQ/T	
Salety production	9006, level 3	
Management system	Complete quality, environment, occupational health and	
Management system	safety management system	
Note: air pollutant, sewage and noise emission should meet environmental impact evaluation		

Table 75: Basic Requirement of Production

acceptance and approval requirements

Production enterprises should have detailed and reasonable application technical documents.

Basic performance should meet current national and industrial standard requirement. Radioactivity should meet *Building Material Radionuclide Limit Value* GB 6566-2010 building material category A requirements.

(2) Grading item

Grading item index weight is shown in Table 76

Index	Weight	Article	Weight
		1) Unit product energy consumption or carbon emission	0.15
Energy 0.33 saving	2) Raw material transportation consumption	0.05	
	3) Ceramic tile thickness	0.10	
	4) Energy management system certificate	0.03	
Emission		5) Radioactivity pollution	0.10
Eniission	0.15	6) Product certificate or evaluation, EPD, carbon footprint	0.05
reduction		report	0.05

Table 76: Value of Indexes

Safety	0.12	7) Safety production standardized level	0.02
		8) Usage safety performance	0.10
Conveni-en ce	0.23	9) Unit packaging weight	0.05
		10) Building module requirement	0.03
		11) No need of post processing after sintering	0.05
		12) Pollution resistance	0.05
		13) Applicability and economical efficiency	0.05
Recyclablit	0.17	14) Production wastes recycling	0.09
у	0.17	15) Low quality raw material usage	0.08

I Energy saving

1) Unit product energy consumption meets current national standard *Building Sanitary Ceramics Unit Product Energy Consumption Limit Value* GB 21252 regulation. Rating rules are:

Meet entry level regulation, 60 points;

Meet advanced level regulation, 100 points.

2) Raw material transportation energy consumption score is the sum of the following two, but total score is no more than 100 points.

Raw material with accumulated transportation radium less than 500km, weight ratio no less than 60% but under 70%, give 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points.

Raw material over 500km uses railway and shipping transportation weight ratio no less than70% but under 80%, give 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

3) On the condition of meeting usage requirement, ceramic tile thickness is rated as Table 77:

Pro	ioot		Scoring rule	
Project		60 points	80 points	100 points
Dry hanging hollow ceramic plate	Nominal thickness H	24 <h4in< td=""><td>18<h8in< td=""><td>H8in</td></h8in<></td></h4in<>	18 <h8in< td=""><td>H8in</td></h8in<>	H8in
Square brick	Thickness D	15 <d≤17< td=""><td>13<d≤15< td=""><td>d≪13</td></d≤15<></td></d≤17<>	13 <d≤15< td=""><td>d≪13</td></d≤15<>	d≪13
Other products	Thickness D	8 <d≪10< td=""><td>5.5<d≪8< td=""><td>d≪5.5</td></d≪8<></td></d≪10<>	5.5 <d≪8< td=""><td>d≪5.5</td></d≪8<>	d≪5.5

Table 77: Scoring Rules of Ceramic Tile Thickness (Unit: mm)

4) Pass GB/T 23331 energy management system certificate, give 100 points.

II Emission reduction

5) Internal exposure index \leq 0.9, external exposure index \leq 1.2, 100 points.

6) Pass product certificate or evaluation, submit EPD and carbon footprint report. Score is the sum of the following items:

Pass product certificate or evaluation, total 40 points, rated by experts

Submit EPD report, total 30 points, rated by experts Submit product carbon footprint report, total 30 points, rated by experts.

III Safety

7) Safety production standardized level meets *Enterprise Safety Production Standardized Regulation* AQ/T 9006 regulated level 2, give 80 points; meet level 1, give 100 points.

8) Usage safety performance rating rules are:

Floor tile coefficient of friction (COF) \geq 0.60, or wet floor used floor tile friction performance (BPN) \geq 45, 100 points;

Floor tile should have backside pattern, backside pattern side should comply with national standard requirement, totally 100 points.

IV Convenience

9) Unit packaging weight is rated as Table 78

Project	Rating rules				
Froject	60 points	80 points	100 points		
Single package capacity W, kg	40 <wgit< td=""><td>30<wgit< td=""><td>w0<w< td=""></w<></td></wgit<></td></wgit<>	30 <wgit< td=""><td>w0<w< td=""></w<></td></wgit<>	w0 <w< td=""></w<>		

Table 78: Single Package Weight Rating Rules

- 10) Comply with building module requirement, give 100 points
- 11) No need for post processing after sintering, give 100 points.
- 12) Pollution resistance rating rules are:

Reaching level 4 requirement, 60 points;

Reaching level 5 requirement, 100 points.

 Applicability and economical efficiency rates are the sum of the following two: Matching the applied region economic development level, environment, industry association, total 50 points, rated by experts;

Matching the applied region laws and regulation, standard regulation, total 50 points, rated by experts.

V Recyclability

- 14) Production wastes recycling rating is the sum of the following: Waste ceramics utilizationg ra, 30 points; Waste base (including glaze base) utilization ≥99%, 30 points; Waste glaze slip recycling rate ≥90%, 40 points.
- 15) Low quality raw material usage rating rules are:
 Proportion in ingredient >30% and <40%, 60 points;
 >40% and <50%, 80 points;
 >50%, 100 points.

Chapter 10: Sanitary Ceramics(1) Control itemProduction enterprises should meet Table 79 requirements

Project	Requirement		
Dollutant Emission	Ceramics Industry Enterprise Pollutant Emission Standards		
Poliutant Emission	GB 25464		
Noice emission	Boundary Noise Emission Standard for Industrial Enterprises		
	GB 12348		
	Occupational Contact Limit Value of Chemical Harmful		
Workplace environment	Factors in Workplace GBZ 2.1		
	Occupational Contact Limit Value of Physical Harmful		
	Factors in Workplace GBZ 2.2		
Cofety production	Enterprise Safety Production Standardized Regulation		
Salety production	AQ/T 9006, level 3		
Managament avatam	Complete quality, environment, occupational health and		
Management system	safety management system		
Note: air pollutant, sewage and noise emission should meet environmental impact evaluation			
acceptance and approval requirements			

Table 79: Basic Requirement of Production

Production enterprises should have detailed and reasonable application technical documents.

Basic performance should meet current national and industrial standard requirement. Radioactivity should meet *Building Material Radionuclide Limit Value* GB 6566-2010 building material category A requirements.

Water usage efficiency reaches national sanitary ware water usage standard regulation level 3.

(2) Grading item

Grading item index weight is shown in Table 80

	ht		Weight			
Index	Weigl	Article	Toilot	Urinal	Other	
			Tollet	Squatting pan		
Energy saving	0.58	 Unit product energy consumption or carbon emission Raw material transportation 	0.10	0.10	0.20	
		consumption				
		 Sanitary ceramics unit weight 	0.05	0.05	0.20	
		4)Water usage efficiency	0.25	0.30		

Table 80: Value of Indexes

		5)Cleaning function	0.05		
		6)Energy management	0.10	0.15	0.15
		system certificate	0.10	0.13	0.15
		7)Flushing noise	0.05		—
Emission		8)Radioactivity pollution	0.10	0.15	0.15
reduction	0.15	9)Product certificate or			
reduction		evaluation, EPD, carbon	0.05	0.05	0.05
		footprint report			
Safety	0.12	10) Safety production	0.02	0.02	0.02
	0.12	standardized level	0.02	0.02	0.02
		11)Installation, replacement	0.05	0.05	0.05
Convei-	0.10	and maintenance	0.05	0.05	0.05
ence	0.10	12)Applicability and	0.05	0.05	0.05
		economical efficiency	0.05	0.05	0.05
		13)Production wastes	0.05	0.05	0.05
Recyclabi-li	0.10	recycling	0.05	0.05	0.05
ty	0.10	14)Low quality raw material	0.05	0.05	0.05
		usage	0.05	0.05	0.05

I Energy saving

1) Unit product energy consumption meets current national standard *Building Sanitary Ceramics Unit Product Energy Consumption Limit Value* GB 21252 regulation. Rating rules are:

Meet entry level regulation, 60 points;

Meet advanced level regulation, 100 points.

2) Raw material transportation energy consumption score is the sum of the following two, but total score is no more than 100 points.

Raw material with accumulated transportation radium less than 500km, weight ratio no less than 60% but under 70%, give 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points.

Raw material over 500km uses railway and shipping transportation weight ratio no less than70% but under 80%, give 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

5) Single piece weight meets Table 81 requirement, give 100 points

Table 01. Weight Requirements for Bingle Fielde				
Product Category	Single piece weight,kg			
Toilet (including water tank)	≤il			
Squatting pan	≤ua			
Urinal	≤in			
Others	≤he			

Table 81: Weight Requirements for Single Piece

4) Water usage efficiency precedes national sanitary ware water usage standard regulation level 3, rating rules are:

Reaching level 2 requirement, give 80 points;

Reaching level 1 requirement, give 100 points.

5) Toilet cleaning function rating rules are:

After every flushing accumulated residue inkline total length is less than 25mm, and each residue inkline is less than 13mm, give 60 points;

After every flushing accumulated residue inkline total length is less than 15mm, and each residue inkline is less than 6mm, give 100 points;

6) Pass GB/T 23331 energy management system certificate, give 100 points.

II Emission reduction

7) Toilet flushing noise is rated as Table 82

Table 82: Scoring Rules of Toilet Flushing Noise Requirements

Project	Rating rule			
Project	60 points	80 points	100 points	
Flushing noise,	60 <l<sub>10≤0d</l<sub>	55 <l<sub>10≪0d</l<sub>	L ₁₀ ≪0d	
dB	50 <l<sub>50≪0d</l<sub>	45 <l<sub>50≪0d</l<sub>	L ₅₀ ≪0d	

8) Internal exposure index \leq 0.9, external exposure index \leq 1.2, 100 points.

9) Pass product certificate or evaluation, submit EPD and carbon footprint report. Score is the sum of the following items:

Pass product certificate or evaluation, total 40 points, rated by experts Submit EPD report, total 30 points, rated by experts

Submit product carbon footprint report, total 30 points, rated by experts.

III Safety

10) Safety production standardized level meets *Enterprise Safety Production Standardized Regulation* AQ/T 9006 regulated level 2, give 80 points; meet level 1, give 100 points.

IV Convenience

11) Easy to install, replace and maintain, totally 100 points, rated by experts.

12) Applicability and economical efficiency rates are the sum of the following two:

Matching the applied region economic development level, environment, industry association, total 50 points, rated by experts;

Matching the applied region laws and regulation, standard regulation, total 50 points, rated by experts.

V Recyclability

13) Production wastes recycling rating is the sum of the following:

Waste ceramics utilization \geq 90%, 30 points;

Waste base (including glaze base) utilization \geq 99%, 30 points;

Waste glaze slip recycling rate ${\geqslant}90\%, 40$ points.

14) Low quality raw material usage rating rules are:

Proportion in ingredient >30% and <40%, 60 points; >40% and <50%, 80 points; >50%, 100 points.

Chapter 11: Premixed mortar

environmental impact assessment approval

(1) Control item

Premixed mortar production enterprises should meet Table 83 requirement

Items	Requirement		
	Air Pollutant Comprehensive Emission Standards GB		
Air Dellutent Emissions	16297, Level 3;		
All Pollutant Emissions	Or meet the minimum requirements of the local emission		
	standards		
Sewage Emission	Sewage comprehensive emission standard GB 8978		
Noise Emissions	Boundary Noise Emission Standard for Industrial		
Noise Emissions	Enterprises GB 12348		
	Occupational Contact Limit Value of Chemical Harmful		
Workplace Environment	Factors in Workplace GBZ 2.1		
workplace Environment	Occupational Contact Limit Value of Physical Harmful		
	Factors in Workplace GBZ 2.2		
Sofo Broduction	Enterprise Safety Production Standardized Regulation		
Sale Floduction	AQ/T 9006, Level 3		
Management System	Complete quality, environment and occupational health and		
wanayement System	safety management system		
Noted: Air pollutants, sewage, noise emissions should be in line with the requirements of			

Table 83: Basic Requirement of Production

The whole process management of equipment, facilities matching and so on should meet the relevant requirement of local ready-mixed mortar green (cleaner) production management.

Production enterprises should have a detailed and feasible application of technical documents

The performance of ordinary mortar, dry-mixed ceramic tile adhesive mortar should meet the requirements of current national standard *Premixed Mortar* GB/T 25181; the performance of adhesive and surface mortar that is used in EPS exterior insulation system should meet the requirement of current national standard "molded polystyrene board thin plaster wall insulation material" GB/T 29906; other premixed mortar performance should be consistent with the relevant requirement of current national standards.

(2) Grading item

The weight of each index in the table is shown in Table 84.

Item	Weight	Article	Weight	
Energy	0.15	1) Raw material transportation energy consumption	0.05	
		2) Unit product energy consumption or carbon emission	0.07	
Saving		3) Energy management system certificate	0.03	
		4) Emissions of air pollutants (excluding particles)	0.05	
		5) Particles emission	0.10	
Emission	0.25	6) Ordinary mortar bulk rate and the special mortar bag	0.05	
reduction	0.25	rate		
		7) Product certificate or evaluation, EPD, carbon footprint	0.05	
		report	0.05	
	0.40	8) Strength	0.12	
		9) Strength dispersion coefficient	0.12	
Safety		10) Durability	0.12	
		11) Standardization level of Safety Production	0.02	
		12) Measurement management system	0.02	
Conveni-	0.40	13) Construction performance	0.05	
ence	0.10	14)Applicability and economical efficiency	0.05	
Recycla-	0.10	15) Comprehensive utilization rate of solid wastes	0.05	
bility	0.10	16) Use of ashes	0.05	

Table 84: Value of Indexes

I Energy saving

1) Energy consumption of raw material transportation. The rating is the sum of the following two scores, but the total score is not more than 100 points:

Raw material with accumulated transportation radium less than 500km, weight ratio no less than 60% but under 70%, give 40 points; no less than 70% but under 80%, 60 points; no less than 80% but under 90%, 80 points; no less than 90%, 100 points.

Raw material over 500km uses railway and shipping transportation weight ratio no less than70% but under 80%, give 20 points; no less than 80% but under 90%, 40 points; no less than 90%, 60 points.

2) Energy consumption per unit of product consistently improve for 3 consecutive years, the rating is the sum of the following:

Having energy classification measurement, 20 points;

Energy measurement instruments with online collection, upload functions, 20 points; Establishment of energy efficiency management information system, 30 points;

Continuous improvement based on energy efficiency management information system analysis results, 30 points

3) Pass GB/T 23331 energy management system certificate, give 100 points

II Emission reduction

4) Plant sulfur dioxide emissions meets Level 2 according to Table 2 in *Air Pollutant Comprehensive Emission Standards* GB16297, 60 points; In line with the relevant local standards in comprehensive emission of air pollutants, 100 points
5) The emission of atmospheric particulate matter in the factory shall be rated as the sum of the following items:

In the case of organized emission, the particles exhausted from the gas emission cylinders complies with *Cement Industry Air Pollutants Emission Standard* GB 4915, 40 points; In line with the relevant local standards in comprehensive emission of air particles, 60 points;

In the case of unorganized emission, the particles exhausted from the gas emission cylinders complies with <Standards on Emission Standards for Air Pollutants in Cement Industry> GB 4915, 20 points; In line with the relevant local standards in comprehensive emission of air particles, 40 points

6) Ordinary mortar bulk rate, special mortar bag rate. The rating rules are as follows Ordinary mortar annual bulk rate achieves 70%, 60 points; achieves 80%, 80 points, achieves 90%, 100 points.

The average consumption per ton of special mortar on the bags is \geq 40, 0 points, \geq 25 but <40, 60 points; \geq 20 but <25, 80 points; <20, 100 points;

7) Submit environmental product statement (EPD), carbon footprint report through product certification or evaluation, the rating is the sum of the scores of each items as follows:

Pass product certification or evaluation, total 40 points, according to the experts' rating;

Submit environmental product statement (EPD), total 30 points, according to the experts' rating;

Submit carbon footprint report, total 30 points, according to the experts' rating;

III Safety

8) The rating rules for strength rating as follows:

If the ratio between measured value and design value of compressive strength of ordinary mortar is >2.0, 50 points; \geq 1.0 but <1.15, or \geq 1.5 but <2.0, 75 points; \geq 1.15 but <1.5, 100 points;

If the ration between measured value and design value of the original tensile bond strength of adhesive and surface mortar that is used in EPS exterior insulation system is \geq 1.0 but <1.2, 50 points; \geq 1.8, 75 points; \geq 1.2 but <1.8, 100 points;

If the ration between measured value and design value of the original tensile bond strength of dry mixed ceramic tiles adhesive mortar is \geq 1.0 but <1.5, 50 points; \geq 2.5, 75 points; \geq 1.5 but <2.5, 100 points;

9) The rating rules for the dispersion coefficient of 10 continuous batches of product strength are as follows:

 \leq 30% but >20%, 40 points;

 \leq 20% but >10%, 40 points;

 \leq 10%, 100 points

10) The rating rules for durability are as follows:

If the ration between design and measured value of compressive strength loss after ordinary mortar freeze-thaw cycles is: \geq 1.0 but <1.5, 50 points; >1.5 but \leq 2.0, 75 points; >2.0, 100 points;

If the ration between measured value and design value of water resistance, freeze-thaw resistance and tensile bond strength of adhesive and surface mortar that is used in EPS exterior insulation system and dry mixed ceramic tiles adhesive mortar is \geq 1.0 but <1.2, 50 points; \geq 1.8, 75 points; \geq 1.2 but <1.8, 100 points.

11) If the safety production standardization level meets Level 2 according to *Enterprise Safety Production Standardized Regulation* AQ/T 9006, 80 points; if meeting Level 1, 100 points;

12) If passing the certification of GB/T 19022 Measurement management system, 100 points.

IV Convenience

13) The rating rules for construction convenience are as follows:

If the ration between measured value and design value of ordinary mortar water retention rate is \geq 1.0 but <1.05, 50 points; \geq 1.10, 75 points; \geq 1.05 but <1.10, 100 points;

When the operational time of adhesive and surface mortar that is used in EPS exterior insulation system is \geq 1.5, if the ration between measured value and design value of the original tensile bond strength is \geq 1.0 but <1.2, 50 points; \geq 1.8, 75 points; \geq 1.2 but <1.8, 100 points;

After dry mixed ceramic tiles adhesive mortar is dries for 20mins, if the ration between measured value and design value of the original tensile bond strength is \geq 1.0 but <1.2, 50 points; \geq 1.8, 75 points; \geq 1.2 but <1.8, 100 points.

14) The rating for applicability and economy are the sum of the following two ratings:

Matching the application regional economic development level, environment, industry supporting and so on, total 50 points, according to the experts' rating;

Matching the application regional law and regulations, standard specification and so on, total 50 points, according to the experts' rating;

V Recyclability

15) The rating rules for the comprehensive utilization rate of solid wastes are as follows:

≥30% but <40%, 40 points;
≥40% but <50%, 55 points
≥50% but <60%, 70 points
≥60% but <70%, 85 points
≥70%, 100 points

16) Consuming the ashes from production process, equipping with automatic ash return equipment, metering ingredient system, strong operable, and reasonable recycling, total 100 points, according the experts' rating.

Chapter 12: Others

1) In the condition of fulfilling the definition of green building materials and fundamental requirements, other building products can be evaluated via the evaluation method and technical index in the guidelines.

2) The scores can be given by fulfilling the requirements of grading items in the guidelines, no score if not fulfilling.

Chapter 13: Bonus Items

1) Advanced production process or equipment are used in the production process of building materials and the influence in environment is obviously lower than average level of the industry. Total 2 points, according to the experts' rating.

2) The building materials are significant innovation and the performance is obviously better than the average level of the industry. Total 3 points, according to the experts' rating.

5. Labels and Environmental Product Declaration of

Sustainable Building Materials /Components in Europe

In Europe, there are various information tools that intend to inform customers (users, downstream manufactures, retailers, etc.) about the environmental impacts from manufacturing and using the products. They are operated by governments, private companies, and other non-governmental organizations. Some of them are tested independently. Others are declared by manufacturers, importers, and distributers themselves. These independently verified information tools can be categorized into two types: eco-labeling and environmental product declaration.

This chapter will mainly focus the first type. It starts with an overview various eco-labels of sustainable building materials/components and then presents how various green buildings schemes and these materials/components labels are linked. Important tools that facilitate the selection of sustainable building materials/components will also be highlighted. Finally, the chapter will briefly introduce the second type, i.e. environmental product declaration and its principles.

5.1 Ecolabels of sustainable building material and components

Those are developed in Europe (such as the Blue Angel and EU Ecolabel) or internationally. (such as Cradle-to-Cradle (C2C) and Forest Stewardship Council (FSC)). Their rating system also varies according to the scheme and they are valid for one to five years. Scope of product certification, include limited products (such as wood products in FSC) to a wide range of products (such as insulation, floorings, plasters and wall panels etc.). The criteria of these certification include various sustainability features, such as environmental, climate, health, resource efficiency, ethics, etc. The certification bodies can be government agency (such as in the Blue Angel in which RAL organizes award) or accredited third party (such as in EU Ecolabel and FSC).

5.1.1 European and German labels of sustainable building materials

Three European and German sustainable building labels, i.e. The Blue Angel, EU Ecolabel, and The Passive House Components Label, and their features are presented in the table below.

The Blue Angel	
Label Description	Organization structure
The Blue Angel, a type I Eco-label, is	Established in 1978
designed to promote goods and	Awarding body: Umweltbundesamt
services that have - based on the	(German Federal Environment Agency), RAL
entire life cycle – reduced	- German Institute for Quality Assurance and
environmental and health impacts	Certification)
compared to the market average.	Type: In line with the international standard for

Combined with other environmental	eco-labelling, ISO 14024
policy instruments, eco-label initiatives	Ratings:
can play their part to restructure the	Validity:
economy towards sustainable	Webpage:
development.	http://www.blauer-engel.de/index.php

Scope and Range

Products for home and living (such as recycled cardboard, paper and plastics, and textile floorcoverings etc.), construction (such as composite Wood Panels, Wood products, Low-Emission Internal Plasters and Thermal Insulation Material etc.), electric devices, office, energy and heating, and garden.

Criteria determination

Criteria under product groups and services:

-protects environment and health

-protects climate

-protects water

-protects resources

Certification bodies

- German Federal Environment Agency (Umweltbundesamt) which develops the technical criteria

- expert hearings involving representatives from industry and other expert groups

- Environmental Label Jury composed of representatives from HDE (Central Association of German Retail Trade), BUND (Friends of the Earth Germany), BDI (Federation of German Industries), NABU (Nature and Biodiversity Conservation Union), DGB (Confederation of German Trade Unions), vzbv (Federation of German Consumer Organizations), SWR (South West German Broadcasting Corporation) as well as Stiftung Warentest (Foundation for comparative product testing), churches, state ministries of the environment, local authorities and science, decides on the award of a Blue Angel

- RAL which organizes the award with the label users

- German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, the supporting organization of the Blue Angel

Certification procedure

A. for existing basic award criteria

1. The supplier submits their application - In order to use the environmental label,

verification of compliance with the requirements is sent to the awarding body RAL.

2. RAL checks the application for the use of the environmental label for compliance with the stipulated requirements.

3.German Federal Environment Agency submits statement

4.RAL concludes the contract on the use of the environmental label with the supplier/manufacturer

5.Advertising by the supplier using the environmental label based on the contract on the use of the environmental label concluded with RAL

B. for the development of new Basic Award Criteria

1. Anybody can submit a new proposal including comprehensive information on the product to the German Federal Environment Agency

EU Ecolabel		
Label Description	Organization structure	
***	Established in 1992	
* C *	Awarding body: European Eco-labelling	
	board (EUEB)	
	Type: Type I according to ISO 14020	
ECUIDUEI	Ratings:	
www.ecolabel.eu	Validity: 4 years	
Fig. 3: Ecolabel.	Webpage: http://www.eu-ecolabel.de	
Scope and Range		
- Products and services, consumer-orient	ed	
- Building products included: Paints, varn	ishes, heat pumps, wooded floor coverings, soft	
floor coverings and textile floor coverings		
Criteria determination		
-Criteria determination on the basis of life	cycle analysis and the focus on the stages	
(manufacturing and packaging, distribution	on, use and finally the 'end of life') depends on	
where the product has the highest enviro	nmental impact, and this differs from product to	
product.		
-Consider the most significant environme	ntal impacts, mainly the impacts on climate	
change, the impact on nature and biodive	ersity, energy and resource consumption, waste	
generation, emissions to all environmental media, pollution through physical effects and		
use and release of hazardous substances		
-Substitute hazardous substances by safer substances or the use of alternative materials		
or designs, wherever it is technically feasible		
-Reduce environmental impacts due to the durability and reusability of products		
- Include health and safety aspects at various life stages of the products that helps to		
balance between environmental benefits	and burden	
-Consider social and ethical aspects		
Certification bodies		
-Runs via a third party, National Compete	ent Body (PFS Product Policy for Belgium)	
-Product testing by accredited laboratory		
Certification procedure		
Getting Started		
Which products and services are eligible?		
Every product or service supplied for distribution, consumption or use in the European		
Economic Area market (European Union plus Iceland, Lichtenstein and Norway) and		
included in one of the established non-food and non-medical product groups is eligible		
for EU Ecolabel. Discover the full list of established product groups and the related		
product criteria.		
Who can apply?		
Producers, manufacturers, importers, service providers, wholesalers and retailers.		
Retailers can apply for products placed on the market under their own brand name		
Getting Advice		
Start the application in the right product g	roup and contact the Competent Body The	

Competent Body is responsible for evaluating the application and awarding the EU Ecolabel, and also give the applicant technical support and answer the questions about meeting the criteria.

Starting the application

To get your EU Ecolabel license, it is mandatory to apply using the online application tool, ECAT_Admin.

Collecting the Evidence

In order to prove compliance to the criteria for the product group, it is required to provide a dossier made up of the declarations, documents, data sheets and test results. The User Manual for each product group explains the requirements. The EU Ecolabel checklist is a useful tool to manage the dossier. The checklist can be downloaded. Submitting the Application

Once the online application is submitted, the required paper files are also required to be submitted to the Competent Body.

Within two months of the initial application submission, the Competent Body will assess the product against the criteria set for it. If documentation is missing, the applicant will be informed and they will need to provide additional information.

Ecolabel awarded

Application approval:

If the criteria are met and the dossier is complete, the Competent Body will award the EU Ecolabel to the product by creating a contract with the applicant.

Once that's complete, the applicant can use the EU Ecolabel logo on all the products that have met the criteria and on the associated promotional material.

Compliance monitoring:

Once the applicant becomes a license holder, it is their responsibility to stay compliant with EU Ecolabel criteria. The Competent Body will explain how often it will need test samples of your product.

From time to time, the Competent Body may carry out factory inspections and product tests. This ensures that the environmental excellence is maintained for consumers.

The applicant (or the supplier) will need to keep a journal on the test results and all the relevant documentation. This documentation should be available at all times.

If the Competent Body receives evidence that during the validity period, the product no longer complies with the criteria, it will prohibit the use of the EU Ecolabel on that product.

Marketing their product with the EU Ecolabel

Once the EU Ecolabel is awarded to the products, it is the applicant's responsibility as the license holder to register the products and services on the ECAT Product Catalogue and Tourist Accommodation Catalogue via ECAT_Admin.

The Passive House Components	s Label
Label Description	Organization structure
The use of Passive House	The Passive House Institute (PHI) is an
components simplifies the	independent research institute which developed
planner's task significantly and	the Passive House Standard.
contributes significantly to	Validity: Each certificate has a validity of year after
ensuring the proper functioning	which it can be re-certified by the Passive House
of the resulting passive house.	Institute. With each new validation the previous
kühl gemäßigtes Klima	certification loses validity.
Passivhaus Institut	Webpage: http://database.passivehouse.com/de/components/
Figure 19: Passive House	
Label.	

Scope and Range

These are defined depending on the category of the component. These being divided into three categories:

- Opaque Building Envelope: Wall and building systems, Façade anchors, Ground slab, Roof parapet, Flue and exhaust systems, Balcony thermal break technology, Attic steps and ladders, Airtightness systems.

- Building Technologies: Heat Pumps, Ventilation system, Waste water heat recovery system.

- Transparent Building Envelope: Windows, Roof windows, Skylight, Mullion and transom, Glass roof, Opening elements in glass roof, Roller shutters, Entrance doors, Sliding doors, Glazing, Spacers (windows).

The components are also declared according to a specific climate zone:

- Arctic Climate
- Hot Climate

- Temperate Climate

Criteria determination

PHI certifies high energy-efficient materials and components according to their international criteria for Passive House. The criteria are divided into two groups, comfort criteria (including residential health and comfort) and thermal criteria (relevant to the thermal balance of a building).

All criteria can be specified by ascertainable physical or physiological criteria and verified by measurements with established practices and tested according to standard criteria with respect to their characteristics.

If possible, there is a climate-independent formulation of the criteria. However, this is usually less clear for the user - therefore applicable criteria to define climates are also specified.

Certification bodies

PHI as an independent body test and certifies products as to their suitability for use in passive houses.

Certification procedure

Products that bear the certificate "Certified Passive House component" are tested according to standard criteria, with respect to their characteristics comparable and of excellent energy quality.

In certifying a material or component a manufacturer will commission the Passive House Institute and provide them with the necessary components and documentation for calculation and test for on-site application. PHI uses the provided data to prepare calculations and simulations of each component. The results are documented and presented in the final certificate if the component reaches approval. If approval is not reached the same documentation is sent back to the manufacturer from PHI with comments on possible improvements. All criteria, testing methods etc. are defined by PHI. Calculations and testing can however be based on technical standards for the relevant component.

On approval and payment of the certification fee, the component is documented and presented in the database, the calculation software PHPP (for Passive Houses) as well as in the newsletters of the International Passive House Association and IG PassivHaus. Each component also then receives its own ID for verification.

Additional measures

- Tracking and monitoring are responsibility of the manufacturer but are subjects to control by the Passive House Institute. Controls are conducted by PHI and are repeated as seen necessary at the last year after the first certification.

- The Passive House Institute also awards a yearly Component Award, with a changing focus every year. The Passive House Component Award focuses on cost-effective and qualitative components that meet the Passive House Criteria.

- As part of the certification process, PHI advises manufactures to optimize their products. This feedback allows for an improved, sustainable product with reliable thermal characteristics. In addition, guaranteed information for minimum requirements for

building calculation is provided.

- In some cases such as for building technologies, Passive House recognized third party testing centers/laboratories which are working according to Passive House Criteria

Cradle to Cradle					
Label Description			Organiz	ation structu	ire
The Cradle to Cradle Certification framework			Establis	hed in 2005	
focuses on using safe materials that can be			Awarding body: MBDC		
disassembled and re-	cycled as technical	nutrients	(McDonough Braungart Design		
or composted as biol	ogical nutrients. Un	like	Chemist	try)	
single-attribute eco-la	abels, the Cradle to	Cradle	Type: N	ot classified	i.e. it can't be
Certification takes a c	comprehensive app	roach to	regarde	d as an envi	ronmental
evaluating the design	of a product and th	ne	declaration type I, II or II according		
practices employed in	n manufacturing the	e product	to the ISO 14020 standard.		
			Ratings:	Basic, Bro	onze, Silver,
			Gold an	d Platinum	
			Validity:	1-2 years	
			Webpag	je:	
			http://ww	vw.c2ccertifi	ed.org/
Scope and Range					
The products include	building materials,	interior des	ign, paper a	and packagir	ng, textile and
fabric and other prod	ucts				
Criteria determinatior	1				
Criteria in 5 categorie	s: -Material Health				
-Material Reutilizatior	١				
-Renewable Energy a	-Renewable Energy and Carbon Management				
-Water Stewardship					
-Social Fairness					
CERTIFIED	CRADLE TO		CERTIFIE	Dcw	
cradletocradle	PROD		RECARD		
BRONZE					
QUALITY CATEGORY	BASIC BRONZE	SILVER	GOLD	PLATINUM	
			0		
		0			
RENEWABLE ENERGY & CARBON MANAGEMENT	0				
& WATER STEWARDSHIP		0			
SOCIAL FAIRNESS			0		
OVERALL OVERALL OVERALL					
Figure 20: Cradle to cradle certified product scorecard. (Cradle to Cradle)					

Certification bodies

- Runs via MBDC and possibly EPEA

Certification procedure

1. Determine if the product is appropriate for certification: Is it within the scope of certification? Does it comply with the Banned Chemicals Lists? Is there a commitment to continuous improvement and product optimization? Does your product meet eligibility requirements in the Cradle to Cradle Certified Product Standard?

2.Select an Accredited Assessment Body for the testing, analysis, and evaluation of your product: Select from the list of Accredited Assessment Bodies, and develop a certification plan including cost, timeline, and necessary resources

3. Work with the assessor to compile and evaluate data and documentation: Work with assessor and supply chain to collect data. Assessor evaluates data based on Standard criteria and develops optimization strategies. Submit an Assessment Summary Report, assembled by the assessor, to the Institute for final review.

4. Receive certification for the product: The Institute reviews Assessment Summary Report to ensure completeness and accuracy. Applicant signs a Trade-mark License Agreement, and pays the certification fee to the Institute. The Institute makes the final certification decision, conferring a certificate and the use of the Cradle to Cradle Certified mark, considering the requirements of the Trademark Use Guidelines. Work with the Institute to post the products on the product registry.

5.Work with Institute and the marketing teams: Make the customers aware of the innovation and certification story

6. Report the progress: Every two years, work with the assessor and supply chain to gather new data for re-certification. `The Assessor evaluates the data and progress on optimization strategies. Submit the Re-certification Assessment Summary Report to the Institute for review.

Additional measures:

Cradle to Cradle has a website providing simple and clear information of labelling and its application process. This website also includes an online certified product registry, which facilitates project developers to choose these products;

These Assessors are accredited by the Institute based on the experience, qualifications, and training of organization's staff;

With the launch of the new LEED v4, Cradle to Cradle Certified products are written into LEED. Choosing certified products can earn project teams up to two points for Materials & Resources Credit, Building Disclosure and Optimization—Material Ingredients. In addition, BREEAM-Netherland— the 'Environmental Assessment Method' -is now rewarding the use of Cradle to Cradle Certified Products;

Cradle to Cradle also provide training courses to leading companies in the building sector by exploring design methodologies, material health programs, product and systems innovations, and a new definition of waste.

5.1.2 International labels of sustainable building materials

Two sustainable building labels (Cradle-to-Cradle and Forest Stewardship Council) and their features are presented in the table below.

Forest Stewardship Council (FSC)	
Label Description	Organization structure
The Forest Stewardship Council mission	Established in 1993
promotes environmentally sound, socially	Awarding body: FSC accredited certification
beneficial and economically prosperous	bodies. Accreditation Services International
management of the world's forests.	(ASI) is responsible for checking the certification
FSC-certified products ensure	bodies.
environmental protection, community	Type: Type I according to ISO 14020
engagement and access to markets.	Ratings:
There are 3 types of the FSC certificate:	Validity: 5 years, conduct annual surveillance
Forest Management Certification, Chain of	audits to verify the continued compliance with
Custody Certification and Controlled	FSC certification requirements
Wood Certification.	Webpage: https://ic.fsc.org/
Scope and Range	

The FSC promotes environmentally appropriate, socially beneficial, and economically viable management of the world's forests:

• Environmentally appropriate forest management ensures that the harvest of timber and non-timber products maintains the forest's biodiversity, productivity, and ecological processes.

• Socially beneficial forest management helps both local people and global society to enjoy long term benefits and also provide strong incentives to local people to sustain the forest resources and adhere to long-term management plans.

• Economically viable forest management means that forest operations are structured and managed so as to be sufficiently profitable, without generating financial profit at the expense of the forest resource, the ecosystem, or affected communities. The tension between the need to generate adequate financial returns and the principles of responsible forest operations can be reduced through efforts to market the full range of forest products and services for their best value.

• The FSC Principles and Criteria is applied to the entire geographic space inside the boundary of the forest management unit which is being submitted for evaluation of the quality of forest management; FSC-POL-10-004 (Scope of application of the FSC Principles and Criteria for Forest Stewardship, June 2005) backed by FSC-DIS-01-001

Criteria determination

10 principles/new proposed titles:

- 1. Compliance with laws and FSC Principles/ Compliance with legal requirements
- 2. Tenure and use rights and responsibilities/ Workers' rights and employment conditions
- 3 Indigenous peoples' rights/ Indigenous and traditional peoples' rights
- 4. Community relations and worker's rights/ Community relations and development
- 5 Benefits from the forest
- 6. Environmental impact/ Ecosystem functions
- 7. Management plan/ Management planning
- 8. Monitoring and assessment
- 9. Maintenance of high conservation value forests
- 10. Plantations/ Management activities

Certification bodies

Organizations listed in http://www.accreditation-services.com/archives/standards/fsc

Certification procedure

1. Contact one or several FSC accredited certification bodies (CB): To give the applicant a first estimate regarding cost and time demands, the certification body will need some basic information about your operation. The, the certification body will provide the applicant with information about the requirements for FSC certification.

2. Auditing: A certification audit takes place to assess the applicant's qualifications for certification.

3. Certification: After working with a CB towards achieving full FSC requirements compliance, the applicant's operation will receive its FSC Certificate.

5.1.3 Sustainability building schemes and their requirements of sustainable building products and components

In highly efficient or even plus energy buildings – the buildings of the future, the lifetime operational energy consumption is much lower compared with conventional new buildings, while the share of embodied energy is higher due to additional sophisticated construction materials, energy production and recovery systems (Dutil, Rousse & Quesada, 2011), along with the use of renewable technologies. Therefore,

it is necessary to select building materials carefully, with low embodied energy to minimize the adverse effect on the environment. Beyond the energy dimension, sustainable buildings require construction products that are sustainable in terms of health and material efficiency.

In order to fulfil these criteria, specific materials should be used which are listed in various database such as greenbuildingproducts.eu for DGNB and LEED and greenbooklive.com for BREEAM. This section discusses on how material efficiency is achieved in green building certificates used in Europe. Different sustainable building material certificate schemes are also discussed with their certification process. A number of building material database are accessible online in Europe and some of them are listed and discussed in this chapter.

Green building certification systems evaluate the green performance of a building and confirm its green building status (Nelson et al. 2010) by rating and certifying it by an independent third party. Some of the certifications used in Europe are BREEAM (Building Research Establishment's Environmental Assessment Method) from the UK, DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen e.V./German Sustainable Building Council) from Germany, LEED (Leadership in Energy and Environmental Design) from the USA and HQE from France. The rating systems and weightings for criteria differ between these schemes and they are either limited to their country of origin or used internationally (e.g. LEED in the USA and Europe). To date, these systems are voluntary and have been developed through non-governmental or governmental organizations. Figure 22 shows the evolution of these green building certification systems in different countries.

A short overview of some of the green building certificates are given in the tabular form below with the information gathered from the individual websites. Regarding material efficiency in the selected green building certificates, all consider life cycle impact reduction, along with the emphasis on reusing and recycling the materials in order to reduce waste generation and to dispose. Material efficiency is further enhanced by the use of green products from the green material schemes. The FSC products are suggested by all green building certificates, and some green material schemes are country specific. The product list is also suggested by the various database which shows the product details as well as their suppliers.

Figure 22: Evolution of Green building certification (Source: Ebert et al. 2011).

DGNB (CORE 14 scheme)			
Label Description		Organization structure	
DGNB is a meritocratic rating system		Established in 2007	
that covers all relevant	t topics of	Country of Origin: Germany	
sustainable construction	on. It was	Responsible: DGNB together with BMVBS	
developed to respond	for a society that	(German Federal Ministry of Transport,	
faces a wide range of	challenges such	Building, and Urban Affairs)	
as climate change, res	source scarcity, as	Criteria: Environmental Quality, Economic	
well as the financial cr	isis. It includes	Quality, Sociocultural and Functional Quality,	
ecological, economical and		Technical Quality, Process Quality and Site	
socio-cultural issues in the planning,		Quality	
construction, and operation of buildings		Ratings: Bronze (35%)/ Silver (50%)/ Gold	
for sustainable buildings (DGNB 2012).		(65%)/ Platinum (80%)	
Regulation: Voluntary			
Webpage: http://www.dgnb.de/en/			
Material efficiency			
DGNB focuses on avoidance of construction waste by the design that are ease of			
deconstruction, recycling and dismantling; use environment friendly materials that have			
Green Product Certific	ation; and design alto	eration with resource saving.	
	Environmental quality		
Material	ENV 1.1 Life Cycle Impact Assessment		
sub-criteria	ENV 1.2 Local environmental impact		
	ENV 1.3 Responsible Procurement		
Certification	A Project Certification Query (PCQ) process must be completed (in		
requirement	general)		
Certifier	DGNB Auditor (650 DGNB auditors till date) or DGNB Consultant (400 DGNB consultants till date)		

Material schemes suggested (voluntary)	The Blue Angel, timber from FSC or PEFC certified sources, stones with Xertifix, Fair Stone certificates, Gut (Gemeinschaft umweltfreundlicher Teppichböden e.V.) -signet label for textile floor coverings
	LCA data in ESUCO database must match the methodological
Material database	standards, quality and completeness set by ESUCO database and
suggested	this must be documented comprehensively for verification,
(voluntary)	GISCODE/product code: Safety data sheet, technical information,
	www.wingis-online.de, greenbuildingproducts.eu

BREEAM 2014

Label Description	Organization structure
BREEAM is the world's leading sustainability	Established in 1990
assessment method for master planning	Country of Origin: UK
projects, infrastructure and buildings. It inspires	Responsible: BRE Global (under BRE
developers and creators to excel, innovate and	Trust)
make effective use of resources. The focus on	Criteria: Energy, Health and Wellbeing,
sustainable value and efficiency makes	Innovation, Land Use, Materials,
BREEAM certified developments attractive	Management, Pollution, Transport,
property investments and generates	Waste and Water
sustainable environments that enhance the	Ratings: Pass (\geq 30%), Good (\geq
well-being of the people who live and work in	45%), Very Good (≥55%), Excellent
them. BREEAM has 80% market share and is	($\geq~$ 70%) and Outstanding ($\geq~$ 85%)
applied in over 70 countries worldwide.	Regulation: Voluntary
	Webpage: http://www.breeam.com

Material efficiency

BREEAM considers life cycle impacts of building material used, the reuse of existing building facades, building structure, recycled aggregates, the minimization of construction waste and the use of low embodied and environmentally friendly materials determined by their Green Guide Rating.

	Materials
Material	Mat 01 Life cycle impacts
	Mat 03 Responsible Sourcing of Materials
sub-criteria	Mat 04 Insulation
	Mat 06 Material efficiency
	During the assessment process, each category is sub-divided into
	a range of issues, which promotes the use of new benchmarks,
Certification	aims and targets. When a target is reached, credits are awarded.
requirement	Once the development has been fully assessed, depending upon
	the total number of credits awarded, a final performance rating is
	achieved.
Certifier	Licensed BREEAM assessors
Material schemes	Cradle to Cradle, FSC and PEFC certificates, BRE Environmental
suggested	Profile methodology, (As a licensed BREEAM/EcoHomes/Code for

(voluntary)	Sustainable Home Assessor, you may now use the Green Guide	
	Calculator online tool to model a new bespoke element using	
	available Green Guide Components.) Green Guide rating?	
Material database	A list of products approved to RES6001 and additional information	
suggested	A list of products approved to BES6001 and additional information	
(voluntary)	IN www.greenbooklive.com/	

LEED 2013			
Label Description		Organization structure	
USGBC's LEED green building rating		Established in 1998	
system has been a sig	nificant driver for	Country of Origin: USA	
market transformation	since its debut in	Responsible: US Green Building Council	
2000. Even if some pr	ogress is already	Criteria: Location and Transportation,	
achieved, urgency to i	mprove our built	Sustainable Sites, Water Efficiency, Energy	
environment still exists	s. LEED v4, the	and Atmosphere, Material and Resources,	
next version of LEED,	was released in	Indoor Environmental Quality, Innovation and	
2013 and redefines le	adership in green	Regional Priority	
building. It includes m	any new concepts	Ratings: Certified (40-49 points), Silver	
and more rigorous req	uirements to	(50-59 points), Gold (60-79 points) and	
continue the transform	nation of our	Platinum (80 and above)	
construction industry.	Until 2016, nearly	Regulation: Voluntary, consensus-based, and	
3,800 projects in Euro	pe were	market driven, performance based	
participating in LEED.		Webpage: http://www.usgbc.org	
Material efficiency			
LEED emphasizes on	building material reu	se and promotes recycling; manage the	
construction waste an	d use regional enviro	nmentally friendly materials with Green Product	
Certifications. It focuse	es on materials to get	t a better understanding of their compound and	
health and environme	ntal impacts.		
	Materials and Resources		
	MR Storage and Collection of Recyclables,		
	MR Construction ar	nd Demolition Waste Management Planning	
Material	MR Building Life Cycle Impact Reduction		
sub-criteria	MR Building Product Disclosure and Optimization – Environmental		
	Product Declaration, Sourcing of Raw materials, Material		
	Ingredients		
	MR Construction and Demolition Waste Management		
Certification	Third parts world corporate such is shill war arts (CCD)		
requirement	i nird-party venned corporate sustainability reports (CSK)		
Certifier	LEED Accredited Professional		
Material schemes	Wood products must be certified by the Forest Stewardship Council		
suggested	or USGBC- approved equivalent, Cradle to Cradle, ANSI/BIFMA e3		
(voluntary)	Furniture Sustainab	ility Standard?	
Material database	Data sets must be compliant with ISO 14044, Environmental		
suggested	Product Declarations which conform to ISO 14025, 14040, 14044,		

(voluntary)	and EN 15804 or ISO 21930 and have at least a cradle to gate
	scope

5.1.4 Sustainable building materials and components database

Material databases with detailed information support architects and planners to find sustainable building materials and at the same time help manufacturers to present their sustainable building materials.

Below some of these material databases will be presented in table, including Greenbuildingproducts.eu, WECOBIS, Ecoinvent, Ökobau-dat and Green Spec. The products from the database are preferable materials to be used to get green building certification. They are generally available online for free, some with user registration requirement (as in Greenbuil-dingproducts.eu). Some green building certifications follow country specific database (such as Ökobaudat for DGNB and Green Spec for BREEAM), while Greenbuildingpro-ducts.eu include products that can be used to get the building certified from DGNB and LEED.

Greenbuildingproducts.eu

Description

This is the 1st database for products assessed in terms of LEED and DGNB criteria. Separate database for manufacturer (construction material producer, product manufacturer and framework manufacturer) and database users (Builders, planners and planning offices, construction companies, Accredited DGNB Auditors and LEED Accredited professionals) is provided. It also offers the specific product related assessment declaration with all necessary evaluation results concerning the certification criteria and furnishing of proofs and documentation.

Database for which criteria in Green building certificates

LEED Indoor Environmental Quality: IEQ Credit 4.1 Low Emitting Materials – Adhesives and Sealants, IEQ Credit 4.2 Low Emitting Materials – Paints and Coatings LEED Materials and Resources: MR Credit 4: Recycled Content, MR Credit 5: Regional Materials, MR Credit 6: Rapidly Renewable Materials, MR Credit 7: Certified Wood DGNB Criterion 6 Risks for the local environment:

Online database contains

ID name, Product name, material provider companies, Indoor Environmental Quality (IEQ) (Adhesives, paints and coatings, flooring systems and composite fibre woods) and Materials and Resources (MR) (Recycled content, regional materials, rapidly renewable materials and FSC certified wood).

The search result includes:

- declaration sheet for specific product,

- technical data sheet,

- contact information of the manufacturer.

Published by: HOINKA GmbH

Webpage: www.greenbuildingproducts.eu

Access requirement: User registration, free access

WECOBIS

Description

The WECOBIS building material information system provides the holistic ecological selection of building materials by providing product-independent, environmental and health-related data. This information is provided for the life cycle phases of raw materials, production, processing, use and end of life disposal.

Database for which criteria in Green building certificates

BNB criteria (Risks to the Local Environment – New Construction (BN_1.1.6), Risks to the Local Environment – Refurbishment (BK_1.1.6), Indoor Air Quality (3.1.3) and Dismantling, Separation and Utilization (4.1.4)

Online database contains

Building Products (Construction panels, Flooring, Insulation, Seals, Glue, Wood-based materials, Solid building materials, mortar and screed, surface treatments, and Glazing. Raw materials (Binders, Aggregates, Plastics and Metals)

Published by: The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB)

Webpage: http://www.wecobis.de

Access requirement: Free of charge

Ecoinvent

Description

Ecoinvent lists product databases provided by the Swiss Center for Life Cycle inventories. It holds the world's leading database with consistent and transparent, up-to-date Life Cycle Inventory (LCI) data (current version Ecoinvent version 3). The data is available in the 'ecoSpold2' data format and compatible with most of the Life Cycle Assessment (LCA) and eco-design software tools such as LEGEP Software tool (LEGEP Software GmbH, Germany), GaBi (PE International/ LBP-GaBi, University of Stuttgart, Germany) and Umberto (ifu Hamburg/ ifeu Heidelberg, Germany).

Database for which criteria in Green building certificates

Online database contains

Published by:

Webpage: http://www.ecoinvent.org/database/database.html

Access requirement: Online register for free as a guest (limited access), buy a licence for full access

Ökobaudat

Description

Ökobaudat is a German building material database for assessment of global ecological effects. As a standardized database for ecological evaluations of buildings it is made available by the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety to all persons involved in building construction. Building materials,

construction and transport processes are described regarding their ecological effects. ÖKOBAUDAT contains both generic datasets and specific environmental declaration datasets from diverse companies or associations. Data published in ÖKOBAUDAT is publicly available at no charge and can be used for life cycle assessment of building components and buildings. The owner of the datasets remains responsible for them (contents, values).

The first database was published in 2009 and since then has been updated and expanded regularly. Until 2016, datasets on more than 700 different building products are provided. Since September 2013, ÖKOBAUDAT has been the first life-cycle analysis database that completely complies with standard DIN EN 15804.

Database for which criteria in Green building certificates

DGNB, Bewertungssystem Nachhaltiges Bauen für Bundesgebäude (BNB)

Online database contains

1. Mineral building products 2. Insulation materials, 3. Wood, 4. Metals, 5. Coverings, 6. Plastics, 7. Components for windows and curtain walls, 8. Building service engineering, and 9. Others

The first seven categories include information on production, maintenance and disposal of materials phases. Building service engineering contains further information on the use phase. The "Other" category contains information on for example transport of materials and waste disposal of materials.

Published by: the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

Webpage: http://www.oekobaudat.de/en

Access requirement: Publicly available at no charge

Green Spec

Description

Originally set up in 2003 as a two-year project, in conjunction with the BRE (Building Research Establishment) Green Spec was funded by the UK Government with the purpose to develop information on low environmental impact building materials for architects and specifiers. Since 2006 Green Spec has been run commercially by a small group of industry professionals dedicated to disseminating information about products and building techniques which optimize the practice of Green construction. Green Spec is split into two parts – one part provides design guidance and the other is a directory of PASS (Product Assessment Screening System) endorsed Green building products.

Green Spec, a UK based and in conjunction with BRE, is dedicated to disseminating information about sustainable building products and construction techniques. It identifies and endorses sustainable building products, systems and services using the PASS (Product Assessment Screening System) and includes a directory of endorsed products along with supporting environmental and specification data.

Database for which criteria in Green building certificates

BREEAM (Material)?

Online database contains

Green products such as L1 Ground treatment and retention, L2 Complete construction entities and components, L3 Structural space and division products, L4 Access, barrier and circulation products, L5 Coverage, cladding, lining, L6 Construction fabric products, L7 Services, and I8 Fixtures and fittings

Published by: Green Spec

Webpage: http://www.greenspec.co.uk

Access requirement: Free online available?

Materialdatensammlung für die energetische Altbausanierung, MASEA ("Material Data Collection for Energy Refurbishment"

Description

This materials database contains all the necessary thermal and hygro-thermal

characteristics for a wide range of typical as well as historical building materials.

The database was created by the Fraunhofer IBP in cooperation with the Institute for building climate control of the Technical University in Dresden and the Centre for Environmentally Conscious Construction in Kassel, supported by the Federal Ministry of Economics and Technology within the framework of the research program EnSan.

As there is little information on the building physics properties in existing building the project was started so as to offer relevant information that might be difficult to obtain. This as prediction and calculation is only as good as the knowledge of the existing materials. The information helps to make energy efficient calculations as well as hydro-thermal calculations more accurate, helping to assess energy consumption as well as potential damage risks. The materials chosen are seen as representative of the "historical" building industry in Germany.

Database for which criteria in Green building certificates

Online database contains

The database covers relevant building material information for building physics, a picture showing the building material as well as other relevant information with notes and information on special features. The material information includes:

- material density
- specific heat capacity
- thermal conductivity
- diffusion resistance (dry) 23 ° C 3/50% of
- diffusion-equivalent air layer thickness (sd value)
- sorption
- free water saturation
- water absorption coefficient
- open porosity

The materials database will be continuously expanded and updated with current materials and new building materials. Therefore, both manufacturers of building materials as well as research institutions have a secure online access. The database contains 474 materials. Published by: Das Fraunhofer-Institut für Bauphysik Webpage: <u>http://www.masea-ensan.de/</u>

5.2 Environmental Product Declaration (EPD)

An Environmental Product Declaration (EPD) communicates the quantified environmental impacts of a product in a standard format. It is based on Life Cycle Assessment (LCA) and common rules known as Product Category Rules (PCR). The latter ensures that EPDs of products of the same functional use category created by different organizations apply the same data scope and metrics. Unlike the various ecolabels presented above, the EPD report does not provide judgement of products, leaving that task to consumers. It looks similar as the nutrient table of food.

ISO 14025

Figure 23: Compound of the Environmental product declarations (EPD).

In 2012, the European Commission published "Sustainability of Construction Work-Environmental Product Declarations - Basic Rules for the Product Category of Building Products" (often shortened to EN 15804). It is a European environmental product declaration of construction norm that ensures that all EPDs for building products, building services, and building processes are derived, verified, and represented in a uniform manner according to through PCR. The aim is to have common format and methodology underlying the environmental indicators of construction products. This standard defines the set of environmental indicators to be used, underlying calculation rules and reporting requirements for an EPD for building products and building related services. It also includes calculating rules of the life cycle inventory and the life cycle impact assessment underlying the EPD. This standard is applicable to construction products, processes and services. The product category rules specify requirements for all construction products for the intended audience (business or consumer) in accordance with ISO 21930 and ISO 14025.

Currently six mandatory impact categories shall be included in an EPD based on EN 15804 :

- Depletion of abiotic resources (elements) in kg Sb equiv. or depletion of abiotic resources (fossil).in MJ
- Global Warming Potential (GWP), in kg CO2 equiv.
- Eutrophication Potential (EP), in kg PO4 equiv.
- Acidification Potential (AP), in kg SO2 equiv.
- Ozone Depletion Potential (ODP), in kg CFC-11 equiv.

• Photochemical Ozone Formation Potential (POFP), in kg ethylene equiv.

Environmental information that is presented in an EPD consists of information modules, based on which the LCA is conducted. Fig. 3 depicts the LCA structure, where product life cycle is divided in module A to C and recycling is module D.

Figure 24: Module-based dissociation of the LCA.

While the production module (A1–3), i.e. cradle-to-gate, is based on existing or historical data, impacts from the downstream stages are assessed based on assumptions (i.e. scenario based information). Thus, the production module (A1–3) is the only mandatory part of the EPD.

Currently, EPD is voluntary. The third party reviews all information given. The procedure to develop an EPD and the requirements on the organisation responsible for each EPD system, the "program operator", are defined in ISO 14025 (2006).

6. Future-oriented sustainable building materials/components

in Europe

This chapter will present different future-oriented sustainable building materials and components in Europe, their energy saving and sustainable potential, and their application examples. The materials and components include insulation materials, windows, Phase Change Materials (PCMs), and Advanced Building Integrated PV (BIPV) systems.

6.1 Insulation

6.1.1 Aerogels

Aerogels are a form of translucent insulation material. Aerogels are materials that are mostly air – usually around 99 % by volume – and can be fabricated from silica, metals and even rubber. They are formed by dehydrating gels and are extremely light because of the resultant porous structure. For example, a cubic metre of silica glass would weigh about 2000 kg. A silica aerogel block of the same dimensions would weigh 20 kg. Despite this, aerogels are relatively strong. Silica aerogels consist of tiny dense silica particles of about 1 nanometre size. Aerogels are excellent insulators, having about one hundredth of the thermal conductivity of glass.

Although their high cost of production has initially limited their application to high end industrial and space applications, they are lately finding commercial applications as building insulation as well (typically in form of blanket insulation). Double glazing that replaced the air gap with an aerogel would improve the insulation value by a factor of three as against the very best current multiple glazing. It would be possible to achieve a 99% vacuum between the panes, since a solid supports them. They are best suited for applications such as skylights etc. where a clear line of sought to the exterior is not required, but only daylight is required. However, even with a thin aerogel sandwich the window would have a slightly frosted appearance. The thermal properties of aerogels also make them ideal for harvesting solar heat: Flat plate solar panels could collect heat and then radiate it back into space.

6.1.2 Vacuum insulation panels

Vacuum Insulation Panels (VIPs) are formed by creating vacuum in the hollow core between two tightly sealed rectangular panels. The walls of the panels are made of rigid, yet highly porous materials such as treated silica, perlite or glass fibre. The entire panel is then enclosed with a barrier film typically made of aluminium metalization. They are mostly used in insulating walls and roofs. Although they offer superior insulation properties compared to all other building insulation materials, their cost and handling still act as barriers to their wide spread application. They are not as flexible as other insulation materials which can be cut on site into different sizes. They are however, best suited to use in prefabricated wall panels etc.

Table 85 compares typical values of different materials used in building insulation. .

Material	R-Value (mK/W)
Vacuum insulated panels	0.003-0.005
Aerogel	0.014
Extruded Polysterene (XPS)	0.025-0.04
Expanded Polysterene (EPS)	0.3-0.5
Polyurethane	0.02
Fibre glass	0.4-0.6

Table 85: Comparison of insulation values of building materials

6.2 Advanced windows and glazing systems

Windows are the least insulating elements of the building shell. At the same time, they represent an important part of the building envelope. There is an optimum design for windows, which attempts to provide a balance between these energy flows. Advanced double or triple layered glazing systems with low-e coatings offer cooling or heating energy savings in the range of 3 % to 10% compared to typical single glazing systems.

6.2.1 Double or triple glazing systems with low-e coating

The thermal performance of windows has improved enormously through the use of multiple glazing layers, low-conductivity gases (argon in particular) between glazing layers, low-emissivity coatings on one or more glazing surfaces and the use of framing materials with much lower conductivity. Operable windows are available with heat flows that have only 25-35% of the heat loss of standard non-coated double-glazed (15-20% of single-glazed) windows (Smith, 2005). In recent years the performance of glazing design has been improved from single glazing with U-value as high as 5.6 W/m²K (undesirable), to triple or even quadruple glazing with special treatment, achieving U-values as low as 0.4 W/m²K (desirable). However, the overall window U-value depends on the window frame and thermal bridging and thus reduces the glazing U-value by a marginal factor in highly insulated frames and by considerable factor in poorly insulated metal or wooden frames. Windows frames most often have the lowest U-Value of a window and can have a large impact on the insulating properties of the window. Window rating systems such as National Fenestration Rating Council (NFRC) rates windows for their performance based on prescribed standards and testing procedures.

······································	3 3
Operable windows	U-Value (W/m2K)
Single glazing	5.6
Double glazing	3.0
Triple glazing	2.1
Double glazing with gas infill and coatings	1.1 – 1.6
Triple glazing with gas infill and coatings	0.4 – 0.8

Table 86: Typical U-Values of glazing.

Note: The U-values refer to the glazing only; the overall window U-value will be different depending on the performance of the frame. The frame as the weakest link in window design will lead to an overall lower achievable U-value than the figures shown above; Source: Institute Wohnen und Umwelt & Hessische Energiesparaktion, 2016.

6.2.2 Smart and dynamic windows

Smart or intelligent windows are generally categorized as windows that can dynamically change their characteristics based on the surrounding optical and thermal characteristics. They are divided into two major categories: passive systems which are self-regulating and active systems which can be modulated based on user's needs.

Passive systems

Passive systems react to the natural light or heat stimuli in the immediate surroundings. They are easy to install and to maintain compared to the active systems; However, they lack the user controllability. The following table describes two key passive technologies.

Passive system	Description
	This is a property of the window glass. Photochromic glass
	modulates the transparency based on the incident light intensity.
	This is due to the presence of organic or inorganic compounds such
	as metal halides that react to the ultraviolet light or due to the
	presence of plastics that absorb sun's energy based on the output
Photochromic	colour spectrum variation. When subjected to direct solar radiation,
glazing	the colour intensity of the glass increases in the order of few
	minutes and gradually reverses in about twice that time.
	Their application is more prominent in optical and car industry,
	because high costs, uniform distribution of photochromatic
	substances and the loss of reversibility over time are major
	obstacles to their application in buildings.
Thermochromic glazing	Thermochromic glazing is similar to photochromic glazing in terms
	of modulating the transparency. However, the change is due to the
	external surface temperature of the glass instead of the external
	radiation. It is caused either by a chemical radiation or by the
	inclusion of a phase transition material consisting of a wide range of
	organic and inorganic compounds, and films of metal oxides such
	as vanadium oxide. The transition is made between 10 °C
	(maximum transparency) and 65 °C (minimum transparency).
	Polyvinyl butyral (PVB) is one of the most promising
	thermocromatic film technologies available in the market.
	Their application is more prevalent compared to phtochromatic
	glazing. However, key drawbacks of this technology include lack of

Table 87: Key passive systems for windows technology.

user controls, disability to eliminate glare in specific situations of low
temperature and high solar radiation.

Active systems

They are similar to passive systems in terms of modulating the optical properties. However, active systems differ as they can be directly controlled by the users or controlled automatically by the integration of a building automating or management system. They can be adjusted using minuscule energy, based on a variety of factors such as internal and external temperature, external radiation, natural lighting levels and user needs etc. The following table describes three key active technologies.

Table 88: Key active systems for windows technology.

198

A choice between different smart technologies is made based on various design and functional aspects such as the range of visible light allowance, ultraviolet high performance, energy consumption in natural and transitions states, tint and colour requirements, availability and maintenance etc. Commercial glass manufactures such as Guardian, View etc., manufacture a variety of passive and dynamic smart glass systems.

Figure 28: Example of a smart glass technology. Right:less transparent , left: more transparent (Albright, p.17)

6.3 Phase Change Materials

The application of Phase Change Materials (PCMs) in building construction has been an innovative technology. PCMs work on the principle of storage and release of latent heat. PCMs typically store heat during day (or during intense heat periods) and release it during the night (or less intense heat periods), changing from solid phase to liquid phase and vice versa. The heat required for this process is known as latent heat. This latent heat absorption helps in absorbing significant amount of heat without raising the ambient temperature. The following figure shows an example of the application of a BioPCM. Enthalpy is shown on the y-axis and temperature on x-axis. As it can be seen, the rise in enthalpy is used up in the phase change without an increase in the temperature.

Figure 29: Enthalpy Profile of the BioPCM. (Muruganantham, 2010, p.15)

PCMs are made up of different organic, inorganic materials and also derived from agricultural sources products. For building applications, organic PCMs such as heptadecane (phase change temperature 21 °C), dodecanol (phase change

temperature 24 °C), octadecane (phase change temperature 29 °C) and dodecanol (phase change temperature 24 °C) are used. PCMs could reduce the building's peak cooling loads by approximately 11% and annual cooling load by approximately 9%. Inorganic PCMs are usually salt hydrates of inorganic salts containing one or more water molecules. Some examples are CaCl₂.6H₂O, LiNO₃.3H₂O etc. They are nontoxic, non-combustible and less corrosive compared to organic PCMs. They have melting points in the range of 5 °C to 130 °C and are suitable for a range of building related applications. PCMs are capable of saving cooling energy in the range of 9-25% depending on the enthalpy of the PCMs, the PCM loading and PCM location. Biobased PCMs are typically hydrogenated hydrocarbons from various plant and animal based products such as oils from palm, coconuts and soybeans and animal fat such as beef tallow etc. They are chemically stable, they offer higher fire-resistance compared to organic PCMs and can last for decades.

The PCMs are packaged in pouches, plates, balls etc. depending on their area of application. They can either be flat or tubular in shape. PCMs are integrated into buildings as extended layers on walls and roofs, or can be added in the interiors on to the ceilings and floors. PCMs can also be integrated with materials (mixed within the material): insulation materials such as fibreglass insulation, finishing materials such as plasters and also with interior partition and ceiling systems such as gypsum board etc. The advantage of PCM technology is that they can be added to existing buildings as sheets, blocks, and layers with minimum invasion in the structure. The choice of the PCM material and application depends on factors such as usage, space design, temperature profile of the space and PCM material, and fire rating etc. The following figures show different applications of PCMs in buildings.

Figure 30: Passive working delta cool ceiling panels containing inorganic PCM (Kośny, 2015, p.41).

Figure 31: Installation of the active-chilled ceiling system containing PCM-enhanced plaster and plastic micro-tubing - Fraunhofer ISE, Germany. (Kośny, 2015, p.43)

Figure 32:Fig. 18: Construction details of a roof assembly containing, reflective insulation, and subventing air channels, followed with two PCM insulation systems produced by Outlast, USA. (Kośny, 2015, p.46)

Figure 33: Experimental attic module containing microencapsulated PCM blended with cellulose insulation, ORNL, USA, testing facility. (Kośny, 2015, p.48)

Figure 34: Installation of the test wall containing PCM-enhanced fibreglass insulation. (Kośny, 2015, p.37)

Left side presents wall cavity instrumentation with array of thermocouples installed across the wall cavity. Right side Cavity finish task, after blowing in fiberglass

Figure 35: Installed BioPCM Mat in the Ceiling. (Muruganantham, 2010, p.16)

6.4 Advanced Building Integrated PV (BIPV) systems

Modern PV systems offer customization to be integrated into building façade as an external finish. Building elements such as shading devices like fixed shades and louvers could be replaced with PV panels to serve dual purpose of shading and energy generation. Sunspaces and sky roofs can be replaced with modern transparent/translucent PV panels instead of plain glass.

Two main aspects of Solar Photovoltaics in current and future building integration would be the panel technology and mounting technology. The efficiency of the panel

technology lies in the transparency levels that can be achieved while producing the maximum energy possible. Mounting technology should enable smooth integration into the building and at the same time allow for smooth operation and maintenance. Mouting the PV glazing systems can be done using the regular architectural glass mounting technologies such as linear mouting (mullion and transom facades, and structural glazing systems) or point fixing systems such as spandrel glazing systems. However, the installation required proprietary technology based on the PV glass panel to interconnect the panels with each other and with the balance of systems such as inverters, storage and distribution systems.

6.4.1Panel technology improvements for transparent panels

Commercial organizations such as Polysoalr, Onyxsolar etc. offer proprietary technology based on transparent solar photovoltaic glass technologies (typically a transparency of up to 40% can be achieved). They can be customized for their transparency, thickness, color and size. Transparency is typically achieved by encapsulating the photovoltaic cell in an encapsulation material and then sandwiching it between two layers of glass. The cells are spaced depending on the transparency that needs to be achieved. Although technically these are not clear glass photovoltaic systems, the future generation polymer solar cells could be designed to capture light in visible and non-visible spectrum to create actual transparent PV glass. Color tint could also be added to these modules by using color glass or by applying coatings, although it comes at some expense of the efficiency.

Figure 36: Example of BIPV, PV panels as canopies. (Polysolar Limited, 2015, p.19)

An EU-funded project called B-first (fibre reinforced solar technology) focuses on "development and demonstration of a set of standardized multifunctional photovoltaic products for building integration based on a recently developed technology for solar cells encapsulation within glass fibre-reinforced composite materials".

Some of the key objectives of the programme are:

- Design and development of BIPV products based on composite materials, yet at par with the efficiency levels of traditional modules.
- Increasing light transmission properties
- Demonstration of these innovative BIPV products
- Development of product catalogues and datasheets

Products that have been developed during the course of the project are integration of BIPV in:

- Ventilated façade
- Roof shingle
- Curtan wall
- Skylight
- Shading elements

A demonstration building has also been erected under B-first programme using advanced photovoltaic triple glazing system curtain wall based on fibre reinforced composite materials developed within the project. A total of 10 PV modules will be installed covering an area of approximately 18m², with a total power of 1.28kWp and generating an estimated annual energy of 1,229 kWh/year.

Figure 37: Demonstration building from B-first programme. (BFIRST-FP7)

Advanced BIPV is another EU funded project aimed to increase the architectural application of photovoltaic panel in buildings with a concept, more glass, more transparency and more complex geometries. One of the work package involves developing a BIPV vision glass of high quality and stable photovoltaic performance

showing light transmission (LT) as high as 50%. This project is also linked with the Small and Medium-sized Enterprises instrument for promoting the manufacturing of the developed technologies.

Typical applications of such transparent PV glass in atria glazing systems, corridor glazing, staircase glazing systems, double glazed facades, roofing, canopy roofs, green houses etc. where high level of visual light transmittance (VLT) (>50%) is not required. They can also be used in window systems where high VLT is not required.

Figure 38: Example of transparent PV glass application. (Sapa Solar)

Living Tomorrow Brussels, Belgium. PV panels in atrium. 33 see through panels each with a rated power of $136W_p$ have been used in the project along with 14 opaque panels with a rated power of 100 W_p each.

6.4.2 Panel technology improvements for opaque panels

Instead of mounting photovoltaic panels on building envelope, it offers both economic benefits and convenience in construction when the building components are integrated with photovoltaic cells. PV panels can be typically integrated into building cladding systems, roofing systems etc.

Construct-PV is a European Commission funded project with an objective to develop and demonstrate customizable, efficient and low cost BIPV for opaque surface of buildings with partnership in research and industry.

Two pilot projects are being undertaken in this initiative. One project is integrating PV into façade cladding systems as planned in Züblin campus in Stuttgart.

Figure 39: Integrated PV into façade cladding systems in Stuttgart – model. (Construct PV).

Another example of the Construct-PV are BIPV roof shingle modules for school buildings of Mining and Metallurgical Engineering, which arelocated in Zografou campus of the National Technical University of Athens (NTUA).

Figure 40: BIPV roof shingle modules in Athens.(Fraunhofer ISE)

Key objectives of the project is to replace typical shingles with PV shingle modules ensuring leak-tightness and other physical characteristics that a can be achieved by using a typical shingle. The PV shingle modules used glass-glass modules containing high-efficient crystalline heterojunction solar cells and are electrically connected using many thin wires in "smart wire" technology making them invisible from a distance.

References

Advanced BIPV. Project status: Summary of Working Packages (WPs). Retreived from: http://advancedbipv.com/summary-of-working-packages-wps/#

Aerogel Technologies, LLC. Product category – Blankets. Retrieved from: http://www.buyaerogel.com/product-category/blankets/

Albright, B. Switch Materials Inc. - Smart Window Technology (Presentation)

BFIRST-FP7. Fibre reinforced solar technology: BIPV DEMOS. Retreived from: http://www.bfirst-fp7.eu/bipv_demos/

BFIRST-FP7. Objectives. Retreived from: http://www.bfirst-fp7.eu/objectives/

BigEE. Buildings Guide, Residential: Building Envelope – Fenestration. Retreived from: <u>http://www.bigee.net/en/buildings/guide/residential/options/passive/envelope/OPBE_FE/descr</u> <u>iption/</u>

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Environmental and Health Aspects of Building Materials - English Abstract. Retreived from: http://www.wecobis.de/service/infos/english-abstract.html

Casini, M. (2014). Smart windows for energy efficiency of buildings. IInd Intl. Conf. on Advances In Civil, Structural and Environmental Engineering- ACSEE 2014. Institute of Research Engineers and Doctors, USA . doi: 10.15224/978-1-63248-030-9-56

Construct PV. Case Studies: Züblin Demonstration Building (Stuttgart). Retreived from: http://www.constructpv.eu/case-studies/

Cradle to Cradle Products Innovation Institute. Get Cradle to Cradle Certified – Overview. Retreived from: <u>http://www.c2ccertified.org/get-certified/levels</u>

Debacker, W.; Geerken, T.; Stouthuysen,P; Van Holm, M.; Vrancken, K and Willen,S. (June 2011). Sustainable building materials use and Cradle to Cradle. A survey of current project practices. Danny Wille, OVAM. Retreived from: http://www.c2cn.eu/sites/default/files/Build-Materials-C2C_EN_Full%20report.pdf

E3T – Energy Efficiency Emergin Technologies. Aerogel Insulated Double-Glazed Windows. Washington State University, Extension Energy Program. Retreived from: <u>http://e3tnw.org/itemdetail.aspx?id=290</u>

Efficient Windows Collaborative. WINDOW TECHNOLOGIES: Advanced – Photocromic Windows. Retreived from: http://www.commercialwindows.org/photochromic.php

Forest Stewardship Council. (2007). The Global Strategy of The Forest Stewardship Council: Strengthening Forest Conservation, Communities and Markets. Retreived from: <u>https://pt.fsc.org/preview.global-strategy.a-294.pdf</u>

Fraunhofer ISE. Research Projects: Construct-PV – Electrically tested BIPV slates for facade or roof. Retreived from: <u>https://www.ise.fraunhofer.de/en/research-projects/construct-pv.html</u>

Green Building Council. Greenbuild EuroMed: LEED v4: Experiences from Europe. Retreived from:

http://www.usgbc.org/education/sessions/greenbuild-euromed/leed-v4-experiences-europe-72 86241

Green Building Council. (July 2016). LEED in Europe and performance: Partnership is the new leadership. Retreived from:

http://www.usgbc.org/articles/leed-europe-and-performance-partnership-new-leadership

Horizon2020. The SME Instrument. European Commission. Retreived from: https://ec.europa.eu/programmes/horizon2020/en/h2020-section/sme-instrument

How to apply for EU Ecolabel. Retreived from: <u>http://ec.europa.eu/environment/ecolabel/how-to-apply-for-eu-ecolabel.html</u> Last update: 08 March 2017

Kingaspan Insulation, UK. Products – OPTIM-R. Retreived from: http://www.kingspaninsulation.co.uk/Products/Optim-R/Optim-R/Overview.aspx

Kośny, J. (2015). PCM-Enhanced Building Components, Engineering Materials and Processes (Chapter 2). Springer International Publishing Switzerland. DOI 10.1007/978-3-319-14286-9_2

Kośny, J.; Shukla, N. and FAllahi, A. (January 2013). Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates. U.S. Department of Energy – Building Technologies Program. Retreived from: http://www.nrel.gov/docs/fy13osti/55553.pdf

LaMonica, M. (February 2010). High-tech aerogels wrap homes with insulation. CNET. Retreived from: <u>https://www.cnet.com/news/high-tech-aerogels-wrap-homes-with-insulation/</u>

Made-by: Blue Angel. Retreived from: http://www.made-by.org/consultancy/standards/blue-angel/

(MBDC) McDonough Braungart Design Chemistry. Certification Overview. Retreived from: http://www.c2cproducts.com/detail.aspx?linkid=2&sublink=8 Meyer Burger Technology AG. Façade – FACEDESIGN. Retreived from: http://energysystems.meyerburger.com/en/products/facade/facade/

Morgan Advanced Materials Porextherm Dämmstoffe GmbH. Products - Innovative solutions with vacuum insulation panels and microporous high-temperatur insulation. Retreived from: <u>http://www.porextherm.com/en/products.html</u>

Muruganantham, K. (2010). Application of Phase Change Material in Buildings: Field Data vs. EnergyPlus Simulation – M.Sc. Thesis. Arizona State University

Pacson, T. (April 2011). Introduction to Phase Change Materials: Building Applications. The University of British Colombia – Undergraduate research. Retreived from:

https://open.library.ubc.ca/cIRcle/collections/undergraduateresearch/52966/items/1.0103299

Polysolar Limited. (2015). Guide to BIPV Building Integrated Photovoltaics. Retreived from: http://www.polysolar.co.uk/ literature 138380/2015 Guide to BIPV

Sapa Solar. BIPV project - Living Tomorrow Brussels, Belgium. Retreived from: http://www.sapa-solar.com/BIPV-projects-living-tomorrow-brussels.html

Thermablok UK. Thermablok Aerogel Technical Data. Retreived from: <u>http://www.thermablok.co.uk/technical-data</u>